Responsive image
博碩士論文 etd-0611113-160201 詳細資訊
Title page for etd-0611113-160201
論文名稱
Title
應用紅外線於微錫銀凸塊之電遷移研究
Study of Electromigration in Micro SnAg Stripe by the Application of the Infrared
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-27
繳交日期
Date of Submission
2013-07-19
關鍵字
Keywords
焦耳熱、微錫銀凸塊、電遷移、紅外線、IC封裝
Joule heating, Micro SnAg Stripe, Electromigration, IC package, Infrared
統計
Statistics
本論文已被瀏覽 5705 次,被下載 356
The thesis/dissertation has been browsed 5705 times, has been downloaded 356 times.
中文摘要
隨著半導體技術的多元化及蓬勃發展,現今電子產品的發展趨勢朝向「輕薄化、高元件密度」的方向演進,因此體積小,重量輕的需求也成為封裝設計中的必要課題,而當電子產品的尺寸越來越小,其內部電子元件也持續微縮,導致流經金屬導線以及銲錫的電流密度明顯地增加,因此與銲錫相關的可靠度議題也越來越重要。而外界環境溫度以及電流作用時所產生的熱,都會導致電子產品內部元件的失效加速並減少其使用壽命,其主要的因素便是因為高電流和高溫作用下所導致的電遷移效應,也由於銲錫中焦耳熱效應的影響,電遷移現象已經成為了影響封裝元件可靠度的重要因素。
本研究主要分為兩大部分:第一部分以紅外線熱影像技術建立一套微錫銀凸塊表面溫度分佈的量測方法,並顯示利用紅外線於微錫銀凸塊的電遷移研究上具有可行性;第二部分則進行電遷移實驗,在環境溫度24℃,施加定電流0.6 A於金屬導線的情況下,探討金屬導線上六種不同長度之微錫銀凸塊(60微米、50微米、40微米、30微米、20微米、10微米)內部的金屬原子遷移特性,最後,我們將實驗試片的橫剖面研磨拋光,再利用掃描式電子顯微鏡(SEM)及能量散佈光譜儀(EDS)觀測其微結構以及內部各組成材料的變化,並探討其原子受到電遷移以及熱遷移影響下的混合機制。
在本文中我們探討微錫銀凸塊之電遷移與熱遷移效應對於原子擴散行為的影響,其實驗結果顯示,當原子的電遷移作用力與熱遷移作用力之方向相反時,電遷移的影響是較為顯著的,此時原子的移動現象便是由電遷移作用力所主導,此外,當微錫銀凸塊長度縮減達到其臨界長度時,錫原子將不再發生遷移現象,原因是其陽極側產生之壓縮力抵銷電遷移與熱遷移之作用力,抑制了遷移現象的發生。
Abstract
According to the fast development of Semiconductor Technology, currently the trend of electronic products development is to ward “light, thin, and high density”. The demand of small outlines and lightweight has become an essential issue for IC package design. Along with the electronic products are more and more small, the current density of metal runner and solder has increased apparently. Reliability issue is more and more important. The electronic products will hasten fail and reduce the using life. However, the major fail reasons are caused by the heavy current and large heat, i.e. Electromigration. Electromigration phenomenon had become a crucial reliability concern, due to the effect for Joule heating effect in the solder.
The work can be divided into two parts:the first is to establish a method by using infrared thermography technology to measure the temperature distribution of Micro SnAg Stripe, and show the feasibility on the Electromigration Study by using infrared . The second, we investigated six kinds of Micro SnAg Stripe(60 μm、50 μm、40 μm、30 μm、20 μm、10 μm) and study their migration property as a metal runner subjected to fixed a current stressing condition, namely 0.6 A, at a fixed ambient temperature of 24℃. Finally, cross-section examinations and SEM/EDX analysis were conducted to identify the mix mechanism of Electromigration and Thermomigration.
In this study, we investigate the behavior of Electromigration and Thermomigration in Micro SnAg Stripe. The experimental results demonstrated that when Electromigration and Thermomigration force are unfavorable direction, the effect of Electromigration is more significant. Furthermore, Sn atoms stopped migrating for the critical length due to the compressive force of anode side offset Electromigration and Thermomigration force.
目次 Table of Contents
摘要i
ABSTRACTii
目錄iii
圖目錄v
表目錄viii
第一章 緒論1
1-1 前言1
1-2 電子封裝簡介2
1-3 研究動機與目的4
1-4 文獻回顧5
1-5 組織與章節7
第二章 基本理論11
2-1 紅外線技術與相關理論11
2-1-1 紅外線之簡介與應用11
2-1-2 紅外線輻射理論11
2-1-3 紅外線熱影像14
2-2 電遷移理論15
2-2-1 電遷移現象概述15
2-2-2 電遷移之驅動力與通量方程式15
2-2-3 電遷移效應之臨界長度17
第三章 紅外線溫度場量測21
3-1 實驗說明21
3-2 實驗試片與儀器設備22
3-3 實驗的前置工作23
3-3-1 試片之表面處理23
3-3-2 紅外線熱影像儀的校正24
3-4 焦耳熱效應測試25
3-5 實驗結果25
第四章 微錫銀凸塊之電遷移實驗41
4-1 實驗說明41
4-2 實驗試片與儀器設備42
4-3 電遷移實驗43
4-3-1 電流密度的計算43
4-3-2 實驗工作44
4-4 實驗結果45
4-4-1 初始狀態之微結構45
4-4-2 通電後之微結構45
第五章 分析與討論56
5-1 焦耳熱效應的探討56
5-1-1 電流值的影響56
5-1-2 截面尺寸的影響57
5-1-3 金屬導線之溫度分佈58
5-2 微錫銀凸塊之遷移現象探討59
5-2-1 溫度梯度的影響60
5-2-2 微結構之變化探討61
5-2-3 遷移驅動力的混合機制探討62
第六章 結論75
參考文獻76
參考文獻 References
1. N. Grayeli, “Challenges and Opportunities in Electronic Package Technology
Development,” Intel Technology Journal, Vol. 9, No. 4, 2005.
2. V. B. Fiks, “On the Mechanism of the Mobility of Ions in Metals,” Soviet Physics
Solid State, pp.14, 1959.
3. J. R. Black, “Mass Transport of an Aluminum by Momentum Exchange with
Conducting Electrons,” IEEE/IRPS International Reliability Physics Symposium,
1967 6th Annual Proceeding, pp.148-159, 1967.
4. I. A. Blech, “Electromigration in Thin Aluminum Films on Titanium Nitride,”
Journal of Applied Physics, Vol 47, pp.1203-1208, 1976.
5. W. Zhou, L. J. Liu, B. L. Li, and P. Wu, “Effect of Intermetallic on
Electromigration and Atomic Diffusion in Cu/SnAg3.0Cu0.5/Cu Joints:
Experimental and First-Principles Study,” Journal of Electronic Materials, Vol. 38,
No. 6, pp. 866-872, 2009.
6. J. D. Wu, P.J. Zeng, Kelly Lee, C.T. Chiu, and J. J. Lee, “Electromigration
Failures of UBM/Bump Systems of Flip-Chip Packages,” Electronic Components
and Technology Conference, IEEE Proceedings, pp. 452-457, 2002.
7. J. P. Joule, “On the heat evolved by metallic conductors of electricity,”
Philosophical Magazine, Vol. 19, No. 124, pp. 65, 1841.
8. J. D. Wu, P. J. Zheng, K. Lee, C. T. Chiu, and J. J. Lee, Proceedings of the 52th
Electronic Components and Technology Conference, IEEE Components,
Packaging, and Manufacturing Technology Society, San Diego, pp. 452. 2002.
9. S. H. Chiu, T. L. Shao, and Chih Chen, “Infrared microscopy of hot spots induced
by Joule heating in Flip-chip SnAg solder joints under accelerated
electromigration,” Journal of Applied Physics, Vol. 88, 2006.
10. W. J. Choi, E. C. C. Yeh and K. N. Tu, “Mean-time-to-failure study of flip chip
solder joints on Cu/Ni(V)/Al thin-film under-bump-metallization,” Journal of
Applied Physics, Vol. 94, No. 9, pp. 5665-5671, 2003.
11. G. A. Rinne, “Issues in Accelerated Electromigration of Solder Bumps,”
Microelectronics Reliability, Vol. 43, No. 12, pp. 1975-1980, 2003.
12. T. L. Shao, S. W. Liang, T. C. Lin, Chih Chen, “Three-dimensional simulation on
current-density distribution in flip-chip solder joints under electric current
stressing,” Journal of Applied Physics, Vol. 98, 2005.
13. W.J. Choi, E.C.C. Yeh, and K.N. Tu, “Electromigration of Flip Chip Solder Bump
on Cu/Ni(V)/Al Thin Film Under Bump Metallization,” Electronic Components
and Technology Conference, IEEE Proceedings, pp. 1201-1205, 2002.
14. H. Wang, C. Bruynseraede, and K. Maex, “Impact of current crowding on
electromigration-induced mass transport,” Journal of Applied Physics, Vol. 84, pp.
517, 2004.
15. R.A.Johns and D.A. Blackburn, “Grain boundaries and their effect on
thermonigration in pure lead at low diffusion temperatures,” Thin Solid Films, Vol.
25, pp. 291-300, 1975.
16. G. J. Van Gurp, P. J. de Waard, and F. J. du Chatenier, “Thermomigration in
indium and indium alloy films,” Journal of Applied Physics, Vol. 58, pp. 728,
1985.
17. C. Chen, H. M. Tong, and K.N. Tu, “Electromigration and Thermomigration in
Pb-Free Flip-Chip Solder Joint,” Annual Review of Materials Research, Vol. 40,
pp. 531-555, 2010.
18. W. Roush and J. Jaspal, Proceedings of the Electronic Components 32nd
Conference, San Diego, CA, p. 342, 1982.
19. H. Ye, C. Basaran, and D. Hopkins, “Thermomigration in Pb–Sn Solder Joints
under Joule Heating during Electric Current Stressing,” Applied Physics Letters,
Vol. 82, No. 7, pp. 1045-1047, 2003.
20. 鍾文仁、陳佑任,IC封裝製程與CAE應用,全華科技圖書股份有限公司,2005。
21. J. R. Black, “Electromigration failure modes in aluminum metallization for
semiconductor devices,” Proceedings of the IEEE,Vol.57, No. 9, pp. 1587-1594,
1969.
22. L. Zhang, S. Ou, J. Huang, and K. N. Tu, “Effect of current crowding on void
propagation at the interface between intermetallic compound and solder in flip
chip solder joints,”Journal of Applied Physics, Vol. 88, 2006.
23.賴耿陽,紅外線工學基礎應用,紅外線技術研究會,台灣復文興業股份有限
公司,第11-23頁,2001。
24. K. N. Tu, J. W. Mayer, and L. C. Feldman, “I electronic thin film science: for
electrical engineers and materials scientists,” Pearson Education POD, pp. 355,
1996.
25. K. N. Tu, “Electromigration in stressed thin films,” Physical Review B, Vol. 45,
No. 3, pp. 1409-1413, 1992.
26. K. N. Tu, J. W. Mayer and L.C. Feldman, “Electronic Thin Film Science,”
Macmillan, New York, 1992.
27. I. A. Blech and C. Herring, “Stress generation by electromigration,” Journal of
Applied Physics, Vol 29, pp. 131, 1976.
28. Ho, P. S. and Kwork, T., “Electromigration in Metals,” Reports on Progress in
Physics, Vol. 52, No. 3, pp. 301-348, 1989.
29. 郭世明,錫銀銅覆晶銲錫隆點之熱/電遷移研究,國立成功大學材料科學及
工程學系碩士論文,2005。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code