Responsive image
博碩士論文 etd-0611115-020308 詳細資訊
Title page for etd-0611115-020308
論文名稱
Title
非極性氧化鋅奈米材料生長於(100)鎵酸鋰基板之微觀形貌控制研究
Study on morphology control of nonpolar ZnO nano-materials grown on (100) LiGaO2 substrate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-08
繳交日期
Date of Submission
2015-07-15
關鍵字
Keywords
奈米材料、鎵酸鋰、氧化鋅、化學汽相沉積法、氣-液-固成長機制
Zinc Oxide, Nano-materials, Vapor-Liquid-Solid method, LiGaO2, Chemical Vapor Deposition
統計
Statistics
本論文已被瀏覽 5671 次,被下載 53
The thesis/dissertation has been browsed 5671 times, has been downloaded 53 times.
中文摘要
本研究使用化學汽相沉積法 (Chemical Vapor Deposition, CVD)於 (100)鎵酸鋰(LiGaO2, LGO)基板上成長具有非極性表面氧化鋅奈米結構。本實驗使用氬氣及氧氣混和氣體作為載送氣體及反應氣體,以氧化鋅及石墨粉按比例均勻混合後作為反應源,並在實驗前先將鎵酸鋰基板鍍金,將金作為催化物利用氣-液-固成長機制進行氧化鋅奈米材料的生長。本實驗室過去已經有利用非極性的(100) LiAlO2及(010) LiGaO2成功生長氧化鋅奈米材料,但在本研究藉由調整不同的實驗參數如:鍍金時間、反應源配比及反應溫度,在(100) LiGaO2基板上生長出形貌整齊對稱且成長方向較一致性的非極性氧化鋅奈米結構。
實驗完成後,利用掃描式電子顯微鏡、X光繞射分析、穿透式電子顯微鏡、光致螢光、陰極螢光、拉曼光譜分析探討其微觀形貌、晶體結構、生長機制、生長方向及其發光特性。
本研究主要可分為三部分:第一部份用鍍金時間改變其金膜的厚度,觀察氧化鋅奈米材料之生長情形;第二部份為探討在不同的反應源配比下,氧化鋅奈米材料之形貌變化。第三部份為探討不同反應源配比下反應溫度與氧化鋅奈米材料之關係。
在氧化鋅奈米材料的晶體結構及表面形貌可以發現兩種不同的結構,以試片A3做代表的(1-100)與(11-20)片狀氧化鋅奈米帶狀形貌及試片D3做代表的具部分兩次偏轉的氧化鋅柱狀結構。由光致螢光分析及陰極螢光分析的結果,試片A3或D3的近能隙邊緣發光峰強度都遠大於深能階放射。由拉曼分析的結果,試片A3及D3的片狀奈米帶及柱狀結構都具有部分的壓應力存在。
Abstract
Our laboratory had grown zinc oxide (ZnO) nano-materials successfully in many cases in the past. In this study, ZnO nano-materials were grown on (100) LiGaO2 (LGO) substrate by chemical vapor deposition. Argon and oxygen are used as the carrier gas and reaction gas, repectively. The mixture powders of ZnO and graphite are used as the reaction sources. ZnO nano-materials were grown by vapor-liquid-solid method. LGO substrates were coated with Au before experiment and use Au as catalyst. Growth mechanism of ZnO nano-materials is investigated by varied growth parameters.
After the reaction of ZnO nano-materials grown, we used scanning electron microscope, x-ray diffractometer, transmission electron microscope, photoluminescence spectroscope, cathodoluminescence and Raman spectroscope to analyze the characteristics of ZnO nano-materials, such as crystal structure, surface morphology, growth mechanism and optical properties.
The experiment has three parts. First, the dependence of the catalyst of Au thickness was investigated. Second, different soure ratio of ZnO and graphite (ZnO:C) was discussed. The last, the different reaction temperature in different ratio of ZnO and graphite was examined.
There are two differenctt structures on the crystal structure and surface morphology of the Zinc oxide nano-materials can be observed, which are ZnO nano-belts structure with growth direction of [1-100]ZnO and [11-20]ZnO showed on the Sample A3 and the ZnO rods structure with branches showed on Sample D3. The analytic results of photoluminescence and cathodoluminescence showed near band edge of sample A3 and D3 are both stronger than deep-level emission. The results of Raman analysis demonstrated that sample A3 and D3 both had some compressive stress in the structure.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
第二章 文獻回顧與理論基礎 3
2-1 氧化鋅材料(Zinc Oxide, ZnO) 3
2-1-1氧化鋅的結構與基本性質 3
2-1-2 氧化鋅的放光特性 4
2-1-3 氧化鋅的製程及應用 5
2-2 鎵酸鋰(LiGaO2, LGO)的結構與性質 8
2-3 化學汽相沉積法(Chemical Vapor Deposition, CVD) 9
2-4 氣-液-固成長機制(Vapor-Liquid-Solid, VLS) 11
第三章 實驗內容 15
3-1 實驗流程 15
3-2 實驗裝置 16
3-2-1反應氣體輸送裝置 16
3-2-2加熱反應爐 16
3-2-3 真空抽氣裝置 16
3-3 實驗步驟與方法 17
3-3-1 試片製備與前處理 17
3-3-2 反應源製備 18
3-3-3 生長氧化鋅奈米材料 18
3-4 實驗分析量測 19
3-4-1 X光繞射分析量測 (X-Ray diffraction, XRD) 19
3-4-2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 19
3-4-3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 19
3-4-4 光致螢光光譜分析(Photoluminescence, PL) 20
3-4-5 陰極螢光光譜分析 (Cathodoluminescence, CL) 20
3-4-6 拉曼光譜分析 (Raman spectroscope) 20
第四章 實驗結果與討論 22
4-1 鍍金時間對氧化鋅奈米材料的影響 22
4-1-1 微觀形貌觀察 22
4-1-2 晶體結構分析 23
4-2 反應源配比對氧化鋅奈米材料的影響 24
4-2-1 微觀形貌觀察 25
4-2-2 晶體結構分析 26
4-3固定反應源的配比(ZnO:C = 3:1)下改變反應溫度的影響 27
4-3-1 微觀形貌觀察 28
4-3-2 晶體結構分析 29
4-4固定反應源的配比(ZnO:C = 2:1)下改變反應溫度的影響 30
4-4-1 微觀形貌觀察 31
4-4-2 晶體結構分析 34
4-5 穿透式電子顯微鏡分析 (TEM) 35
4-6 光致螢光光譜分析(Photoluminescence, PL) 47
4-7 陰極螢光光譜分析(Cathodoluminescence, CL) 50
4-8 拉曼光譜分析 53
第五章 結論 56
第六章 參考文獻 58
參考文獻 References
1. T.V. Torchynska, B. El Filali, J. Lumin., 149 (2014) 54.
2. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science, 292 (2001) 1897.
3. P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103 (1997) 459.
4. M.Y. Chuang, H.C. Yu, Y.K. Su, C.H. Hsiao, T.H. Kao, C.S. Huang, Y.C. Huang, J.J. Tsai, S.L. Wu, Sens. Actuators B: Chem., 31 (2014) 810.
5. L. Ge, X. Jing, J. Wang, J. Wang, S. Jamil, Q. Liu, F. Liu, M. Zhang, J. Mater. Chem., 21 (2011) 10750.
6. H.M. Sun, L.M Wang, D.Q. Chu, Z.C. Ma, A.X. Wang, Y.J. Zheng, L.X. Wang, Ceram Int, 40 (2014) 16465.
7. Y.H. Shi, M.Q. Wang, C. Hong, Z. Yang, J.P. Deng, X.H. Song, L.L. Wang, J.Y. Shao, H.Z. Liu, Y.C. Ding, Sens. Actuators B: Chem., 177 (2013) 1027.
8. M.W. Ahn, K.S. Park, J.H. Heo, D.W. Kim, K.J. Choi, J.G. Park, Sens. Actuators B: Chem., 138 (2009) 168.
9. Z.C. Feng, in: Handbook of Zinc Oxide and Related Materials: Volume One, Materials, CRC Press, September 2012.
10. 林美宜,以化學汽相沉積法在(010)鎵酸鋰基板上成長氧化鋅奈米材料,國立中山大學材料科學研究所碩士論文(2014).
11. 蘭彥廷,以化學氣相沉積法在(100)鋁酸鋰基板上成長氧化鋅奈米材料,國立中山大學材料科學研究所碩士論文(2012).
12. D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, T. Steiner, Mater. Today, 7 (2004) 34.
13. F. Claeyssens, C.L. Freeman, N.L. Allan, Y. Sun, M.N.R. Ashfold, J.H. Harding, J. Mater. Chem., 15 (2005) 139.
14. A. B. Djurišić, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, and S. Gwo, Appl. Phys. Lett., 88, (2006) 103107.
15. X.T. Zhang, Y.C. Liu, Z.Z Zhi, J.Y. Zhang, Y.M. Lu, D.Z. Shen, W. Xu, X.W. Fan, X.G. Kong , J. Lumin. 99 (2002) 149.
16. T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, Y. Horikoshi, Jpn. J. Appl. Phys., 43 (2004) 2602.
17. J. Chen, Z. Feng, P. Ying, M. Li, B. Hana and C. Li, Phys. Chem. Chem. Phys., 6 (2004) 4473.
18. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater., 13 (2001) 113.
19. T.H. Huang, S.M. Zhou, H. Teng, H. Lin, J. Wang, P. Han, R. Zhang, J. Cryst. Growth, 310 (2008) 3144.
20. S.L. Liu, S.M. Zhou, Y.Z. Wang, X. Zhang, X.M Li, C.T. Xia, Y. Hang, J. Xu, J. Cryst. Growth, 292 (2006) 125.
21. S. Venkatachalam, Y. Kanno, Curr. Appl. Phys., 9 (2009) 1232.
22. C.Y. Lee, C.L. Chen, L.W. Chang, Mitch M.C.Chou, J. Cryst. Growth, 407 (2014) 11.
23. J.S. Park, S.K. Hong, T. Minegishi, I.H. Im, S.H. Park, T. Hanada, J.H. Chang, M.W. Cho, T. Yao, Appl. Surf. Sci., 254 (2008) 7786.
24. 黃琮偉,水熱法製備氧化鋅奈米柱與其對乙醇氣體感測研究,逢甲大學光電學系碩士論文(2010).
25. R.S. Sabry, O.A. Azeez, Manuf. Lett., 2 (2014) 69.
26. G. Vijayaprasath, R. Murugan, G. Ravi, T. Mahalingam, Y. Hayakawa, Appl. Surf. Sci., 313 (2014) 870.
27. A.A.M. Farag, M. Cavaş, F. Yakuphanoglu, F.M. Amanullah, J. Alloys Compd., 509 (2011) 7900.
28. C.H. Zang, Y.C. Liu, D.X. Zhao, Y.S. Zhang, Physica B, 404 (2009) 315.
29. Forest S.S. Chien, C.R. Wang, Y.L. Chan, H.L. Lin, M.H. Chen, R.J. Wu, Sens. Actuators, B, 144 (2010) 120.
30. M. Marezio, Acta Crystallogr. 18 (1965) 481.
31. J.P. Remeika, A.A. Ballman, Appl. Phys. Lett. 5 (1964) 180.
32. S. Nanamatsu, K. Doi, M. Takahashi, Jpn. J. Appl. Phys., 11 (1972) 816.
33. T. Ishii, Y. Tazoh, S. Miyazawa, J. Cryst. Growth, 189-198 (1998) 208.
34. L. Liu, J.H. Edgar, Mater. Sci. Eng., R, 37 (2002) 61.
35. S.W. Seo, K.K. Lee, S.B. Kang, S. Huang, W.A. Doolittle, N.M. Jokerst, A.S. Brown, Appl. Phys. Lett., 79 (2001) 1372.
36. S. Duan, X. Teng, P. Han, D.C. Lu, J. Crystal Growth 195 (1998) 304.
37. H.O. Pierson, in: Handbook of Chemical Vapor Deposition Principles, Technology and Applications, Second Edition, William Andrew, December (1999).
38. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett., 4 (1964) 89.
39. L.S. Yu, Y.Y. Lv, X.L. Zhang, Y.Y. Zhang, R.Y. Zou, F. Zhang, J. Cryst. Growth, 334 (2011) 57.
40. S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, Chem. Phys. Lett., 389 (2004) 176.
41. S.H. Jung, S.W. Choi, S.S. Kim, Sens. Actuators, B: Chem., 171-172 (2012) 672.
42. Q.M. Hao, J.Y. Xu, X.J. Zhuang, Q.L. Zhang, Q. Wan, H.Y. Pan, X.L. Zhu, A.L. Pan, Mater. Lett., 100 (2013) 141.
43. Z.Y. Lu, S.X. Shi, J. Lu, P.P. Chen, J. Lumin., 152 (2014) 258.
44. S.T. Boles, C.V. Thompson, E.A. Fitzgerald, J. Cryst. Growth, 311 (2009) 1446.
45. J. Chen, J. Li, J. Li, G. Xiao, X. Yang, J. Alloys Compd., 509 (2011) 740.
46. S. Huang, Q. Cai, J. Chen, Y. Qian, L. Zhang, J. Am. Chem. Soc., 131 (2009) 2094.
47. V. Jourdain, C. Bichara, Carbon, 58 (2013) 2.
48. H. Morkoc, Ü. Özgür, in: Zinc Oxide: Fundamentals, Materials and Device Technology, Wiley-VCH, January 2009.
49. H. Okamoto, T.B. Massalski, Bull. Alloy Phase Diagr., 10 (1989) 59.
50. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Adv. Funct. Mater., 12 (2002) 323.
51. N.H. Alvi, W.U. Hassan, B. Farooq, O. Nur, M. Willander, Mater. Lett., 106 (2013) 158.
52. S.R. Hejazi, H.R.M. Hosseini, M.S. Ghamsari, J. Alloys Compd., 455 (2008) 353.
53. Y. Wei, Y. Ding, C. Li, S. Xu, J.H. Ryo, R. Dupuis, A.K. Sood, D.L. Polla, Z.L. Wang, J. Phys. Chem. C, 112 (2008) 18935.
54. S.Y. Li, C.Y. Lee, T.Y. Tseng, J. Cryst. Growth, 247 (2003) 357.
55. S.H. Yang, P.C. Chen, S.Y. Hong, Curr. Appl. Phys., 9 (2009) 180.
56. X.L. Cai, F.X. Wang, D.W. Yan, Z.M. Zhu, X. F. Gu, Ceram. Int., 40 (2014) 12293.
57. P. Yang, C.M. Lieber, J. Mater. Res., 12 (1997) 2981.
58. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science, 291 (2001) 1947.
59. S.Y. Kuo and H.I. Lin, Nanoscale Res. Lett., 9 (2014) 70.
60. X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Science, 303 (2004) 1348.
61. J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, Nano Lett., 3 (2003) 235.
62. C.S. Lao, P.X. Gao, R.S. Yang, Y. Zhang, Y.Dai, Z.L. Wang, Chem. Phys. Lett., 417 (2005) 359.
63. 余俊毅,非極性氧化鋅磊晶在鎵酸鋰基板上之成長機構研究,國立中山大學材料科學研究所碩士論文(2010).
64. N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J. Cryst. Growth, 130 (1993) 269.
65. J.K. Jian, Cong Wang, Z.H. Zhang, X.L. Chen, L.H. Xu, T.M. Wang, Mater. Lett., 60 (2006) 3809.
66. X.Y. Kong, Z.L. Wang, Nano Lett., 3 (2003) 1625.
67. C.L. Chen, C.A. Li, S.H. Yu, Mitch M.C. Chou, J. Cryst. Growth, 402 (2014) 325.
68. W.A. Doolittle, S.B. Kang, A. Brown, Solid State Electron., 44 (2000) 229.
69. X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Appl. Phys. Lett.78 (2001) 2285.
70. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys.,79 (1996) 7983.
71. H. Kabelka, H. Kuzmany, P. Krempl, Solid State Commun., 27 (1978) 1159.
72. F. Decremps, J. Pellicer-Porres, A.M. Saitta, J.C. Chervin, A. Polian, Phys. Rev. B, 65 (2002) 092101.
73. S. Tripathy, S.J. Chua, P. Chen, Z.L. Miao, J. Appl. Phys. 92 (2002) 3503.
74. N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E. M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, and B. Monemar, J. Appl. Phys. 93 (2003) 126.
75. C.S. Ku, H.Y. Lee, J.M. Huang, C.M. Lin, Cryst. Growth Des., 10 (2010) 1460.
76. R. Cusco, E.A. Llado, J. Ibanez, L. Artus, J. Jimenez, B.G. Wang, M.J. Callahan, Phys. Rev. B, 75 (2007) 165202.
77. X.Q. Wei, B.Y. Man, C.S. Xue, C.S. Chen, M. Liu, Jpn. J. Appl. Phys. 45 (2006) 8586.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code