Responsive image
博碩士論文 etd-0611116-140837 詳細資訊
Title page for etd-0611116-140837
論文名稱
Title
血管內皮細胞創新模擬模型之建構與測試
Construction and verification of a novel vascular endothelial-cell simulation model
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-13
繳交日期
Date of Submission
2016-07-12
關鍵字
Keywords
電位箝制、濃度箝制、數學模擬模型、細胞膜電生理、血管內皮細胞、鈣離子訊息傳遞
membrane electrophysiology, mathematical model, endothelial cell, voltage clamp, concentration clamp, Ca2+ signaling
統計
Statistics
本論文已被瀏覽 5713 次,被下載 22
The thesis/dissertation has been browsed 5713 times, has been downloaded 22 times.
中文摘要
心血管疾病是全球造成死亡的首要原因。由動脈粥狀硬化所引起的心臟病和中風為心血管疾病中常見的兩種病徵,而動脈粥狀硬化的形成則與血管內皮細胞的功能失調有關。血管內皮細胞對於維持身體體內的生理平衡具有重要性及多功能性。過去所發展出的內皮細胞數學模型在描述細胞膜電生理和鈣離子的訊息傳遞路徑上已經有顯著的貢獻。但是其在開發細胞模型上所運用到的電流刺激方法和電位箝制技術,是不足以用來研究非電刺激型的細胞如血管內皮細胞之特性。因此,需要一個更全面的檢測技術來進一步分析研究內皮細胞中的訊息傳遞路徑及生化代謝途徑。
本研究採用一個全新的分析方法“濃度箝制技術”來測試內皮細胞模型,所建構的血管內皮細胞模擬模型首先被劃分成三個具有功能性的組件包括細胞膜、細胞質和內質網。接著利用電位箝制和濃度箝制([Ca2+]i和[IP3]箝制)技術對個別組件進行細部的特性分析。最後,再將各個獨立的組件整合以進行整體細胞的評估及差異分析。透過本研究所建構的內皮細胞模型上進行電化學分析測試,將更能夠釐清細胞膜電生理、細胞內鈣離子訊息傳遞和生化刺激彼此間複雜的關係。
本研究所開發的血管內皮細胞模擬模型除了可以成功地描述細胞膜電生理行為和細胞內鈣離子的訊息傳遞之外,也能正確地模擬出大鼠腸繫膜小動脈內皮細胞中在促效劑誘導下的反應。根據先前學者所提出的內皮細胞模型,本研究在一些數學公式和參數設定上進行修正以達成符合實驗數據的穩定模擬結果。其中,細胞質內鈣離子緩衝的公式經過修改後,可以在維持相同計算精確度之下提升100倍的計算效率。在內皮細胞模型的特性分析測試中,Kir離子通道獨特的電流-電壓關係是造成電位箝制測試中[K+]i不穩定行為以及[Ca2+]i箝制測試中膜電位不穩定行為的主要因素。
本研究建構的特性分析平台能夠使未來在內皮細胞模型中加入新的細胞組件或是加入訊息傳遞路徑上更加容易。此外,此血管內皮細胞模擬模型也可以作為未來研究氧化型陰電性低密度酯蛋白誘導的訊息傳遞路徑及生化代謝途徑之基礎模型。
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. Heart attacks and strokes, two common features of CVDs resulting from atherosclerosis, are initiated by endothelial dysfunction in vascular endothelial cells. Endothelial cells (ECs) are crucial and multifunctional in the maintenance of normal body hemostasis. Previous EC mathematical models have made substantial progress on describing EC membrane electrophysiology and Ca2+ signaling by applying electrical stimulation and voltage clamp. However, these two methods are insufficient to explore the characteristics of non-electrically excitable cells like ECs. Therefore, a comprehensive examination is needed to further analyze EC signaling transduction pathways and biochemical metabolism.
In the present study, an analytical method named “concentration clamp” is adopted to evaluate the performances of EC models. The proposed EC model updated from a previously developed model is first separated into three functional compartments, plasma membrane, cytosol, and endoplasmic reticulum (ER), for detailed characteristics analysis by voltage clamp and concentration clamp ([Ca2+]i clamp and [IP3] clamp). Finally, the individual compartments are integrated into a complete EC for total assessment and performance comparison. Through the electrochemical performance tests on the proposed EC model, the insights of the complex relationship among membrane electrophysiology, intracellular Ca2+ dynamics, and biochemical stimulation can be gained.
The novel EC model developed in this study can describe the plasma membrane electrophysiology and calcium dynamics successfully as well as replicate agonist-induced EC responses correctly as reported in rat mesenteric artery ECs. A few equations and parameters are adjusted to allow reasonable and stable simulations. In addition, the cytosolic Ca2+ buffering equation is changed to improve computational efficiency by 100 times under the same computational accuracy. For characteristics analysis, the unique current-voltage relationship of Kir channel is identified as the key factor responsible for unstable [K+]i behaviors in voltage clamp and unstable Vm behaviors in [Ca2+]i clamp.
In summary, the established analytical platform makes it possible and easier to implement new cellular compartments or signaling transduction pathways into the present EC model. Furthermore, the present work can form the basis for the development of an EC model that will investigate signaling transduction pathways and metabolism of oxidized electronegative low-density lipoproteins (oxLDLs) on vascular ECs.
目次 Table of Contents
TABLE OF CONTENTS

論文審定書 i
摘要 ii
ABSTRACT iv
TABLE OF CONTENTS vi
LIST OF FIGURES xiii
LIST OF TABLES xvii
INTRODUCTION
Vascular Endothelial Cells 1
Endothelial Dysfunction 2
Mathematical Modeling of Biological Systems 3
The Hodgkin-Huxley Model 5
The Luo-Rudy Model 8
A Mathematical Model of the Vascular Endothelial Cell 11
METHODS
The construction of an EC model 16
Plasma Membrane Compartment 20
General Approach 20
Characteristics of the Transmembrane Ionic Currents 21
IKir : Inward Rectifier Potassium Channel Current 21
ISKCa and IIKCa : Calcium-Activated Potassium Channel Currents 23
ICaCl : Calcium-Activated Chloride Channel Current 25
IVRA : Volume-Regulated Anion Channel Current 28
ISOC : Store-Operated Cation Channel Current 29
INSC : Nonselective Cation Channel Current 32
INaCa : Sodium-Calcium (Na+/Ca2+) Exchanger Current 35
I INaK : Sodium-Potassium (Na+/K+) ATPase Current 36
INaKCl : Sodium-Potassium-Chloride (Na+/K+/2Cl-) Cotransport Flux 37
ICap : Plasma Membrane Calcium ATPase Current 39
Cytosolic and Endoplasmic Reticulum Compartments 40
Geometrical Considerations 40
Characteristics of the Cytosolic and ER Compartments 40
ER Ca2+ store 40
IP3 dynamics and IP3R current 41
SERCA and ER leak currents 44
Ca2+ buffering process 46
Experimental Protocols 48
Voltage Clamp Protocols 49
Concentration Clamp Protocols 50
[Ca2+]i Clamp Protocols 50
[IP3] Clamp Protocols 51
Numerical Methods 53
RESULTS
Model Modification 54
Model Verification 55
Plasma Membrane/Cytosolic Compartment Analysis 56
Voltage Clamp Analysis 57
Inward Rectifier Potassium Channel Current (IKir) 57
Calcium-Activated Potassium Channel Currents (ISKCa and IIKCa) 58
Calcium-Activated Chloride Channel Current (ICaCl) 59
Volume-Regulated Anion Channel Current (IVRA) 61
Store-Operated Cation Channel Current (ISOC) 62
Nonselective Cation Channel Current (INSC) 62
Sodium-Calcium (Na+/Ca2+) Exchanger Current (INaCa) 63
Sodium-Potassium (Na+/K+) ATPase Current (INaK) 64
Plasma Membrane Calcium ATPase Current (ICap) 66
Intracellular Ionic Concentration ([Na+]i, [K+]i, [Cl-]i, and [Ca2+]i) 66
Sodium-Potassium-Chloride (Na+/K+/2Cl-) Cotransport Flux (INaKCl) 68
[Ca2+]i Clamp Analysis 70
Membrane Potential (Vm) 71
Intracellular Ionic Concentration ([Na+]i, [K+]i, and [Cl-]i) 73
Sodium-Potassium-Chloride (Na+/K+/2Cl-) Cotransport Flux (INaKCl) 75
Inward Rectifier Potassium Channel Current (IKir) 77
Calcium-Activated Potassium Channel Currents (ISKCa and IIKCa) 79
Calcium-Activated Chloride Channel Current (ICaCl) 80
Volume-Regulated Anion Channel Current (IVRA) 81
Store-Operated Cation Channel Current (ISOC) 81
Nonselective Cation Channel Current (INSC) 82
Sodium-Calcium (Na+/Ca2+) Exchanger Current (INaCa) 82
Sodium-Potassium (Na+/K+) ATPase Current (INaK) 83
Plasma Membrane Calcium ATPase Current (ICap) 85
Endoplasmic Reticulum Compartment Analysis 85
[IP3] Clamp Analysis 86
IP3 dynamics 86
Intracellular and ER stored Ca2+ concentration ([Ca2+]i and [Ca2+]ER) 87
IP3 Receptor Current (IIP3R) 90
SERCA and ER leak currents (ISERCA and Ileak) 91
EC Model Analysis 92
Voltage Clamp Analysis 92
Intracellular and ER stored Ca2+ concentration ([Ca2+]i and [Ca2+]ER) 93
[Ca2+]i-associated transmembrane ionic currents 94
[Ca2+]i Clamp Analysis 95
ER stored Ca2+ concentration, SERCA and ER leak currents
([Ca2+]ER, ISERCA and Ileak) 95
[IP3] Clamp Analysis 97
Intracellular and ER stored Ca2+ concentration ([Ca2+]i and [Ca2+]ER) 97
Membrane Potential (Vm) 98
DISCUSSION AND CONCLUSIONS
Voltage Clamp Analysis 100
[Ca2+]i Clamp Analysis 102
Model Future Applications 105
Conclusions 110
APPENDIX 1: Formulation of the Model 112
APPENDIX 2: Definition of Symbols 117
REFERENCES 121

LIST OF FIGURES

Fig. 1. Schematic Diagram of the EC Model 19
Fig. 2. IKir 23
Fig. 3. IKCa 25
Fig. 4. ICaCl 27
Fig. 5. IVRA 29
Fig. 6. ISOC 31
Fig. 7. INSC 34
Fig. 8. INaCa 36
Fig. 9. INaK 37
Fig. 10. INaKCl 38
Fig. 11. ICap 39
Fig. 12. IP3 and IIP3R 43
Fig. 13. ISERCA and Ileak 45
Fig. 14. Voltage clamp protocols 50
Fig. 15. [Ca2+]i clamp protocols 51
Fig. 16. [IP3] clamp protocols 53
Fig. 17. Voltage clamp analysis on KCa channels 59
Fig. 18. Voltage clamp analysis on CaCl channel 60
Fig. 19. Voltage clamp analysis on VRA channel 61
Fig. 20. Voltage clamp analysis on NaCa exchanger 64
Fig. 21. Voltage clamp analysis on NaK pump 65
Fig. 22. Voltage clamp analysis on intracellular Na+, K+, and Cl- concentration 67
Fig. 23. Voltage clamp analysis on intracellular Ca2+ concentration 68
Fig. 24. Voltage clamp analysis on NaKCl cotransporter 70
Fig. 25. [Ca2+]i clamp on membrane potential Vm 72
Fig. 26. [Ca2+]i clamp analysis on membrane potential Vm 73
Fig. 27. [Ca2+]i clamp analysis on intracellular Na+, K+, and Cl- concentration 75
Fig. 28. [Ca2+]i clamp analysis on NaKCl cotransporter 76
Fig. 29. [Ca2+]i clamp analysis on Kir channel 78
Fig. 30. [Ca2+]i clamp analysis on KCa channels 80
Fig. 31. [Ca2+]i clamp analysis on NaCa exchanger83
Fig. 32. [Ca2+]i clamp analysis on NaK pump 84
Fig. 33. Dynamics of [IP3] clamp 87
Fig. 34. [IP3] clamp analysis on intracellular and ER stored Ca2+ concentration 88
Fig. 35. [IP3] clamp analysis on intracellular and ER stored Ca2+ concentration 90
Fig. 36. [IP3] clamp analysis on IP3 receptor current 91
Fig. 37. [IP3] clamp analysis on SERCA and ER leak currents 92
Fig. 38. Voltage clamp analysis on intracellular and ER stored Ca2+ concentration
94
Fig. 39. [Ca2+]i clamp analysis on ER stored Ca2+ concentration, SERCA, and ER
leak currents 96
Fig. 40. [IP3] clamp analysis on intracellular and ER stored Ca2+ concentration
98
Fig. 41. [IP3] clamp analysis on membrane potential 99
Fig. 42. Voltage clamp analysis on K+ Nernst potential 102
Fig. 43. [Ca2+]i clamp analysis on K+ Nernst potential 104
Fig. 44. Schematic diagram of the lectin-like oxidized low-density lipoprotein
(oxLDL) receptor-1 (LOX-1) and platelet-activating factor receptor
(PAF-R) pathways 108
Fig. 45. Curve fitting with the endothelial internalization of oxLDL to HCAECs
109

LIST OF TABLES

Table 1. Model initial conditions 46
Table 2. Model standard parameter values 46
Table 3. The dependent elements of transmembrane ionic currents 57
Table 4. The dependent elements of the ER compartment and IP3 dynamics 85
參考文獻 References
1. Silva, H.S., A. Kapela, and N.M. Tsoukias, A mathematical model of plasma membrane electrophysiology and calcium dynamics in vascular endothelial cells. Am J Physiol Cell Physiol, 2007. 293(1): p. C277-93.
2. Sumpio, B.E., J.T. Riley, and A. Dardik, Cells in focus: endothelial cell. Int J Biochem Cell Biol, 2002. 34(12): p. 1508-12.
3. Adams, D.J. and M.A. Hill, Potassium channels and membrane potential in the modulation of intracellular calcium in vascular endothelial cells. J Cardiovasc Electrophysiol, 2004. 15(5): p. 598-610.
4. Tran, Q.K., K. Ohashi, and H. Watanabe, Calcium signalling in endothelial cells. Cardiovasc Res, 2000. 48(1): p. 13-22.
5. WHO. Cardiovascular diseases (CVDs) fact sheet. January 2015.
6. American Heart Association.
7. Yang, C.Y., et al., Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler Thromb Vasc Biol, 2003. 23(6): p. 1083-90.
8. Lu, J., et al., Mediation of electronegative low-density lipoprotein signaling by LOX-1: a possible mechanism of endothelial apoptosis. Circ Res, 2009. 104(5): p. 619-27.
9. Fischer, H.P., Mathematical modeling of complex biological systems: from parts lists to understanding systems behavior. Alcohol Res Health, 2008. 31(1): p. 49-59.
10. Hille, B., Ion channels of excitable membranes. 2001, Sinauer: Sunderland, Mass. p. 26.
11. Hille, B., Ion channels of excitable membranes. 2001, Sinauer: Sunderland, Mass. p. 33.
12. Hille, B., Ion channels of excitable membranes. 2001, Sinauer: Sunderland, Mass. p. 37.
13. Hille, B., Ion channels of excitable membranes. 2001, Sinauer: Sunderland, Mass. p. 38.
14. Hille, B., Ion channels of excitable membranes. 2001, Sinauer: Sunderland, Mass. p. 40.
15. Hille, B., Ion channels of excitable membranes. 2001, Sinauer: Sunderland, Mass. p. 42.
16. Hille, B., Ion channels of excitable membranes. 2001, Sinauer: Sunderland, Mass. p. 45.
17. Hodgkin, A.L. and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952. 117(4): p. 500-44.
18. Hille, B., Ion channels of excitable membranes. 2001, Sinauer: Sunderland, Mass. p. 46.
19. Luo, C.H. and Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res, 1991. 68(6): p. 1501-26.
20. McAllister, R.E., D. Noble, and R.W. Tsien, Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol, 1975. 251(1): p. 1-59.
21. Beeler, G.W. and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres. J Physiol, 1977. 268(1): p. 177-210.
22. DiFrancesco, D. and D. Noble, A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc Lond B Biol Sci, 1985. 307(1133): p. 353-98.
23. Quan, W. and Y. Rudy, Unidirectional block and reentry of cardiac excitation: a model study. Circ Res, 1990. 66(2): p. 367-82.
24. Luo, C.H. and Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res, 1994. 74(6): p. 1071-96.
25. Luo, C.H. and Y. Rudy, A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ Res, 1994. 74(6): p. 1097-113.
26. Zeng, J., et al., Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. Circ Res, 1995. 77(1): p. 140-52.
27. Viswanathan, P.C., R.M. Shaw, and Y. Rudy, Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation, 1999. 99(18): p. 2466-74.
28. Faber, G.M. and Y. Rudy, Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys J, 2000. 78(5): p. 2392-404.
29. Livshitz, L.M. and Y. Rudy, Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. Am J Physiol Heart Circ Physiol, 2007. 292(6): p. H2854-66.
30. Hund, T.J. and Y. Rudy, Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation, 2004. 110(20): p. 3168-74.
31. O'Hara, T., et al., Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol, 2011. 7(5): p. e1002061.
32. Wong, A.Y. and G.A. Klassen, A model of electrical activity and cytosolic calcium dynamics in vascular endothelial cells in response to fluid shear stress. Ann Biomed Eng, 1995. 23(6): p. 822-32.
33. Wiesner, T.F., B.C. Berk, and R.M. Nerem, A mathematical model of cytosolic calcium dynamics in human umbilical vein endothelial cells. Am J Physiol, 1996. 270(5 Pt 1): p. C1556-69.
34. Wiesner, T.F., B.C. Berk, and R.M. Nerem, A mathematical model of the cytosolic-free calcium response in endothelial cells to fluid shear stress. Proc Natl Acad Sci U S A, 1997. 94(8): p. 3726-31.
35. Korngreen, A., V. Gold'shtein, and Z. Priel, A realistic model of biphasic calcium transients in electrically nonexcitable cells. Biophys J, 1997. 73(2): p. 659-73.
36. Schuster, A., J.L. Beny, and J.J. Meister, Modelling the electrophysiological endothelial cell response to bradykinin. Eur Biophys J, 2003. 32(4): p. 370-80.
37. Nilius, B. and G. Droogmans, Ion channels and their functional role in vascular endothelium. Physiological Reviews, 2001. 81(4): p. 1415-1459.
38. Kapela, A., A. Bezerianos, and N.M. Tsoukias, A mathematical model of vasoreactivity in rat mesenteric arterioles: I. Myoendothelial communication. Microcirculation, 2009. 16(8): p. 694-713.
39. Kapela, A., S. Nagaraja, and N.M. Tsoukias, A mathematical model of vasoreactivity in rat mesenteric arterioles. II. Conducted vasoreactivity. Am J Physiol Heart Circ Physiol, 2010. 298(1): p. H52-65.
40. Suh, S.H., et al., Characterisation of explanted endothelial cells from mouse aorta: electrophysiology and Ca2+ signalling. Pflugers Arch, 1999. 438(5): p. 612-20.
41. Koenigsberger, M., et al., Role of the endothelium on arterial vasomotion. Biophys J, 2005. 88(6): p. 3845-54.
42. Fink, C.C., B. Slepchenko, and L.M. Loew, Determination of time-dependent inositol-1,4,5-trisphosphate concentrations during calcium release in a smooth muscle cell. Biophys J, 1999. 77(1): p. 617-28.
43. Yang, J., et al., The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell model. Med Eng Phys, 2003. 25(8): p. 691-709.
44. Jafri, M.S., J.J. Rice, and R.L. Winslow, Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys J, 1998. 74(3): p. 1149-68.
45. Lindblad, D.S., et al., A model of the action potential and underlying membrane currents in a rabbit atrial cell. Am J Physiol, 1996. 271(4 Pt 2): p. H1666-96.
46. Lu, Z., Mechanism of rectification in inward-rectifier K+ channels. Annual Review of Physiology, 2004. 66: p. 103-129.
47. Crane, G.J., et al., Evidence for a differential cellular distribution of inward rectifier K channels in the rat isolated mesenteric artery. J Vasc Res, 2003. 40(2): p. 159-68.
48. Hille, B. and W. Schwarz, Potassium Channels as Multi-Ion Single-File Pores. Journal of General Physiology, 1978. 72(4): p. 409-442.
49. McSherry, I.N., et al., Endothelial cell Ca2+ increases are independent of membrane potential in pressurized rat mesenteric arteries. Cell Calcium, 2005. 38(1): p. 23-33.
50. Xia, X.M., et al., Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature, 1998. 395(6701): p. 503-7.
51. Crane, G.J., et al., Small- and intermediate-conductance calcium-activated K+ channels provide different facets of endothelium-dependent hyperpolarization in rat mesenteric artery. J Physiol, 2003. 553(Pt 1): p. 183-9.
52. Ahn, S.C., et al., Characteristics and a functional implication of Ca2+-activated K+ current in mouse aortic endothelial cells. Pflugers Archiv-European Journal of Physiology, 2004. 447(4): p. 426-435.
53. Burnham, M.P., et al., Characterization of an apamin-sensitive small-conductance Ca2+-activated K+ channel in porcine coronary artery endothelium: relevance to EDHF. British Journal of Pharmacology, 2002. 135(5): p. 1133-1143.
54. Bychkov, R., et al., Characterization of a charybdotoxin-sensitive intermediate conductance Ca2+-activated K+ channel in porcine coronary endothelium: relevance to EDHF. Br J Pharmacol, 2002. 137(8): p. 1346-54.
55. Hartzell, C., I. Putzier, and J. Arreola, Calcium-activated chloride channels. Annu Rev Physiol, 2005. 67: p. 719-58.
56. Park, M.K., et al., Local uncaging of caged Ca(2+) reveals distribution of Ca(2+)-activated Cl(-) channels in pancreatic acinar cells. Proc Natl Acad Sci U S A, 2001. 98(19): p. 10948-53.
57. Fang, Q.Z., et al., Tetrandrine inhibits Ca2+-activated chloride channel in cultured human umbilical vein endothelial cells. Acta Pharmacol Sin, 2004. 25(3): p. 327-33.
58. Nilius, B., F. Viana, and G. Droogmans, Ion channels in vascular endothelium. Annu Rev Physiol, 1997. 59: p. 145-70.
59. Strieter, J., et al., Volume-Activated Chloride Permeability Can Mediate Cell-Volume Regulation in a Mathematical-Model of a Tight Epithelium. Journal of General Physiology, 1990. 96(2): p. 319-344.
60. Doughty, J.M., J.P. Boyle, and P.D. Langton, Blockade of chloride channels reveals relaxations of rat small mesenteric arteries to raised potassium. Br J Pharmacol, 2001. 132(1): p. 293-301.
61. Parekh, A.B. and J.W. Putney, Jr., Store-operated calcium channels. Physiol Rev, 2005. 85(2): p. 757-810.
62. Sedova, M., et al., Capacitative Ca2+ entry is graded with degree of intracellular Ca2+ store depletion in bovine vascular endothelial cells. Journal of Physiology-London, 2000. 523(3): p. 549-559.
63. Freichel, M., et al., Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol, 2001. 3(2): p. 121-7.
64. Jow, F. and R. Numann, Divalent ion block of inward rectifier current in human capillary endothelial cells and effects on resting membrane potential. J Physiol, 1998. 512 ( Pt 1): p. 119-28.
65. Nonner, W., D.P. Chen, and B. Eisenberg, Anomalous mole fraction effect, electrostatics, and binding in ionic channels. Biophys J, 1998. 74(5): p. 2327-34.
66. Jow, F. and R. Numann, Histamine increases [Ca2+](in) and activates Ca-K and nonselective cation currents in cultured human capillary endothelial cells. Journal of Membrane Biology, 2000. 173(2): p. 107-116.
67. Kamouchi, M., et al., Nonselective cation channels in endothelial cells derived from human umbilical vein. J Membr Biol, 1999. 169(1): p. 29-38.
68. Park, S.J., et al., Background nonselective cationic current and the resting membrane potential in rabbit aorta endothelial cells. Jpn J Physiol, 2000. 50(6): p. 635-43.
69. Csanady, L. and V. Adam-Vizi, Ca2+- and voltage-dependent gating of Ca2+- and ATP-sensitive cationic channels in brain capillary endothelium. Biophysical Journal, 2003. 85(1): p. 313-327.
70. Bondarenko, A., Sodium-calcium exchanger contributes to membrane hyperpolarization of intact endothelial cells from rat aorta during acetylcholine stimulation. Br J Pharmacol, 2004. 143(1): p. 9-18.
71. Sedova, M. and L.A. Blatter, Dynamic regulation of [Ca2+](i) by plasma membrane Ca2+-ATPase and Na+/Ca2+ exchange during capacitative Ca2+ entry in bovine vascular endothelial cells. Cell Calcium, 1999. 25(5): p. 333-343.
72. Sage, S.O., C. van Breemen, and M.B. Cannell, Sodium-calcium exchange in cultured bovine pulmonary artery endothelial cells. J Physiol, 1991. 440: p. 569-80.
73. Gall, D., et al., Significance of Na/Ca exchange for Ca2+ buffering and electrical activity in mouse pancreatic beta-cells. Biophysical Journal, 1999. 76(4): p. 2018-2028.
74. Weber, C.R., et al., Allosteric regulation of Na/Ca exchange current by cytosolic Ca in intact cardiac myocytes. J Gen Physiol, 2001. 117(2): p. 119-31.
75. Smith, N.P. and E.J. Crampin, Development of models of active ion transport for whole-cell modelling: cardiac sodium-potassium pump as a case study. Prog Biophys Mol Biol, 2004. 85(2-3): p. 387-405.
76. Diecke, F.P., et al., Regulation of Na-K-2Cl cotransport in cultured bovine corneal endothelial cells. Exp Eye Res, 2005. 80(6): p. 777-85.
77. Kawai, N., R.M. McCarron, and M. Spatz, Effect of hypoxia on Na(+)-K(+)-Cl- cotransport in cultured brain capillary endothelial cells of the rat. J Neurochem, 1996. 66(6): p. 2572-9.
78. O'Donnell, M.E., Role of Na-K-Cl cotransport in vascular endothelial cell volume regulation. Am J Physiol, 1993. 264(5 Pt 1): p. C1316-26.
79. Schneider, J.C., et al., Involvement of Na+/Ca2+ exchanger in endothelial NO production and endothelium-dependent relaxation. American Journal of Physiology-Heart and Circulatory Physiology, 2002. 283(2): p. H837-H844.
80. Jacob, R., Calcium oscillations in endothelial cells. Cell Calcium, 1991. 12(2-3): p. 127-34.
81. Paltauf-Doburzynska, J., et al., Histamine-induced Ca2+ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca2+-ATPase. Journal of Physiology-London, 2000. 524(3): p. 701-713.
82. Li, J., et al., The Molecule Pages database. Nature, 2002. 420(6916): p. 716-7.
83. Carter, T.D. and D. Ogden, Kinetics of Ca2+ release by InsP3 in pig single aortic endothelial cells: evidence for an inhibitory role of cytosolic Ca2+ in regulating hormonally evoked Ca2+ spikes. J Physiol, 1997. 504 ( Pt 1): p. 17-33.
84. Winslow, R.L., et al., Electrophysiological modeling of cardiac ventricular function: from cell to organ. Annu Rev Biomed Eng, 2000. 2: p. 119-55.
85. Morton, J.S., et al., Effect of sodium tanshinone IIA sulfonate treatment in a rat model of preeclampsia. Am J Physiol Regul Integr Comp Physiol, 2015. 308(3): p. R163-72.
86. Apostolov, E.O., et al., Scavenger receptors of endothelial cells mediate the uptake and cellular proatherogenic effects of carbamylated LDL. Arterioscler Thromb Vasc Biol, 2009. 29(10): p. 1622-30.
87. Kim, M.Y., et al., Oxidized Low-density Lipoprotein- and Lysophosphatidylcholine-induced Ca Mobilization in Human Endothelial Cells. Korean J Physiol Pharmacol, 2009. 13(1): p. 27-32.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code