Responsive image
博碩士論文 etd-0611116-235929 詳細資訊
Title page for etd-0611116-235929
論文名稱
Title
利用生物濾床處理飲用水三鹵甲烷、鹵化乙酸與生物可利用有機碳之研究
Treament of trihalmethanes、haloacetic acids and assimilable organic carbon in drinking water using a biological filter system
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-02
繳交日期
Date of Submission
2016-07-12
關鍵字
Keywords
鹵化乙酸、三鹵甲烷、飲用水、生物濾床、有機碳
AOC, THM, drinking water, Biological filter, HAA
統計
Statistics
本論文已被瀏覽 5699 次,被下載 0
The thesis/dissertation has been browsed 5699 times, has been downloaded 0 times.
中文摘要
本研究旨在一座淨水廠探討降低飲用水消毒副產物與微量有機物之處理效能,並建立處理後出水之濃度經驗方程式。主要利用生物濾床(Biological Filter,BF)方法處理水中過量三鹵甲烷(Trihalomethanes,THM)、鹵化乙酸(Haloacetic Acids,HAA)與生物可利用有機碳(Assimilable Organic Carbon,AOC )。
本研究所有實驗分為二階段:第一階段改變BF之不同空床停留時間(Empty Bed Contact Time,EBCT) 處理原水,來探討影響THM, HAA與AOC之去除效率。第二階段建立BF處理系統出水之THM、HAA與AOC之濃度經驗方程式。第一階段實驗結果顯示,原水THM濃度範圍為16.0 - 32.0 μg/L,經BF處理系統之出水THM濃度降低在5.0-14.0 μg/L。當EBCT為30 min、40 min、50 min及60 min時,THM平均去除率分別為43%、59%、63% 及64%。EBCT為50與60 min時,利用生物濾床處理THM之去除效率63%以上。原水HAA平均濃度約50 μg/L,經BF處理系統之出水HAA濃度降低在4 - 8 μg/L。當EBCT為10min、20min、30 min、40 min、50min及 60 min時,HAA平均去除率分別為66%、70%、86%、88%、85%及83% 。EBCT為40,50, 及60 min時,利用生物濾床處理HAA之去除效率80%以上。原水AOC平均濃度約49.2 μg acetate-C/L,經BF處理系統之出水AOC濃度降低約29 μg acetate-C/L。EBCT 為40, 及50 min時,利用生物濾床處理AOC之去除率約50%以上。第二階段結果顯示採用類神經網路方法迴歸分析,建立生物濾床處理出水之THM、HAA與AOC經驗方程式,並由計算與實測值之相關係數(R2)顯示三個水質項目之經驗方程式皆具高度相關性。
Abstract
This study is focused to investigate the treatment efficiency for reducing disinfection by products and trace organic carbons in a water treatment plant. And the concentrations of empirical equations in effluent of treatment systems were established. In this study a biological filter (BF) was to treat the excess concentrations of trihalomethanes (THM), haloacetic acids (HAA), and assimilable organic carbon (AOC) in treated drinking water.
In this study all experiments were including two steps: in first step tests were changing different empty bed contact times in a biological filter for investigating the treatment efficiencies of THM, HAA, and AOC. In second step the empirical equations of effluent concentrations in a biological filter were established. The results in first step showed the concentrations of THM in effluent of a biological filter were reduced to 5.0-14.0 μg/L when concentrations of THM in raw water were ranging from 16.0 to 32.0μg/L. When EBCT were set on 30 min、40 min、50 min、and 60 min, the average treatment efficiency of THM were about 43%、59%、63% 、and 64% respectively. The selections of EBCT by using a BF could be 50 and 60 minutes for the removal of THM was over 63%.When the concentrations of HAA were about 50μg/L in raw water, the effluent of a biological filter could reduce to 4 - 8 μg/L. When EBCT were set on 10 min、20 min、30 min、40 min, 50 min, and 60 min, the average treatment efficiency of HAA were about 66%, 70%, 86%, 88%, 85%, and 83% respectively. The selections of EBCT by using a BF could be 40, 50 and 60 minutes for the removal of HAA was over 80%.When the concentrations of AOC were about 49.2μg/L in raw water, the effluent of a biological filter could reduce to 29μg/L. When EBCT were set on 40 min and 50 min, the average treatment efficiency of AOC were about 50% and 60% respectively. The selections of EBCT by using a BF could be 40 and 50 minutes for the removal of AOC was over 50%.The results in second step showed the empirical equations of THM, HAA, and AOC in effluent of a BF were established by using an internet network method. The regressions of efficiencies (R2) in the empirical equations showed calculated values and measurement values had high relationships on three items of water quality.
目次 Table of Contents
中文摘要 i
目  錄 v
圖目錄 viii
表目錄 x
第一章 前  言 1
1-1 研究緣起 1
1-2 研究目的與內容 1
第二章 文獻回顧 3
2-1 自然水體中有機物之分類及性質 3
2-1-1 水中有機物的性質及種類 3
2-1-2 水中有機物之來源及影響 6
2-1-3 淨水場水中有機物變化 8
2-1-4 水中有機物之生物分解程序 9
2-2 淨水處理程序 11
2-2-1 活性碳 11
2-2-2 生物活性碳濾床管柱試驗 11
2-2-3 薄膜 12
2-2-4 淨水場處理程序出水之有機物值變化 16
2-2-5 薄膜處理程序中有機物值變化 17
2-2-6 生物濾床處理程序 18
2-2-7 生物活性碳濾床與薄膜之處理程序 20
2-3 飲用水THM、HAA、AOC 21
2-3-1 消毒副產物定義 21
2-3-2 三鹵甲烷前驅物 23
2-3-3三鹵甲烷分類 24
2-3-4 鹵化乙酸前驅物 24
2-3-5 鹵化乙酸分類 25
2-3-6 生物可利用有機碳 27
2-4 統計分析 30
2-4-1 相關性分析 30
2-4-2 迴歸分析 30
2-4-3 類神經網路方法 30
第三章 研究方法 34
3-1 研究架構及流程 34
3-1-1 研究架構與流程 34
3-2 實驗流程及方法 36
3-2-2 現場模組之BF系統 37
3-2-3 生物濾床實驗方法 39
3-3 水質項目與分析方法 39
3-3-1 總有機碳與溶解性有機碳 40
3-3-2 UV254 40
3-3-3 三鹵甲烷 40
3-3-4 鹵化乙酸 43
3-4 統計分析 46
3-4-1相關性分析 46
3-4-2 線性迴歸分析 47
3-4-3 類神經網路模式概述 48
3-5 分析儀器 52
第四章 結果與討論 53
4-1 原水水質背景調查 53
4-1-1 枯水期原水水質變化 53
4-1-2 豐水期原水水質變化 53
4-2 BF處理效率評估 55
4-2-1 初期階段:生物活性碳濾床馴養 55
4-2-2 BF對有機物處理效率 57
4-3 生物濾床系統對THM與HAA去除效率 59
4-3-1 THM與HAA處理效率 60
4-4 生物性指標處理效率 66
4-5 以類神經網路方法建立BF出水HAA, THM及AOC經驗方程式 71
第五章 結論與建議 78
5-1 結論 78
5-2 建議 79
參考文獻 80
參考文獻 References
1. Akbarizadeh, M., Daghbandan, A., & Yaghoobi, M. (2013). Modeling and Optimization of Poly Electrolyte Dosage in Water Treatment Process by GMDH Type-NN and MOGA. International Journal of Chemoinformatics and Chemical Engineering, 3(2), 94-106.
2. Aleboyeh, A., Kasiri, M. B., Olya, M. E., & Aleboyeh, H. (2008). Prediction of azo dye decolorization by UV/H2O2 using artificial neural networks. Dyes and Pigments, 7(2), 288-294.
3. Aminabad, M. S., Maleki, A., & Hadi, M. (2014). Application of Artificial Neural Network (ANN) for the prediction of water treatment plant influent characteristics. Journal of Advances in Environmental Health Research, 1(2), 89-100.
4. Arbuckle, T. E., Hrudey, S. E., Krasner, S. W., Nuckols, J. R., Richardson, S. D., Singer, P., ... & Waller, K. (2002). Assessing exposure in epidemiologic studies to disinfection by-products in drinking water: report from an international workshop. Environmental Health Perspectives, 110(Suppl 1), 53.
5. Arslan-Alaton, I. (2003). Novel catalytic photochemical and hydrothermal treatment processes for acid dye wastewater. Journal of Environmental Science and Health, Part A, 38(8), 1615-1627.
6. Boccelli, D. L., Tryby, M. E., Uber, J. G., & Summers, R. S. (2003). A reactive species model for chlorine decay and THM formation under rechlorination conditions. Water Research, 37(11), 2654-2666.
7. Bolto, B., Dixon, D., Eldridge, R., & King, S. (2002). Removal of THM precursors by coagulation or ion exchange. Water Research, 36(20), 5066-5073.
8. Buchanan, W., Roddick, F., & Porter, N. (2008). Removal of VUV pre-treated natural organic matter by biologically activated carbon columns. Water Research, 42(13), 3335-3342.
9. Chang, C. L., & Liao, C. S. (2012). Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity. Transfer, 3(3), 4-5.
10. Charnock, C., & Kjønnø, O. (2000). Assimilable organic carbon and biodegradable dissolved organic carbon in Norwegian raw and drinking waters. Water Research, 34(10), 2629-2642.
11. Chen, Y., Yang, B., Dong, J., & Abraham, A. (2005). Time-series forecasting using flexible neural tree model. Information Sciences, 174(3), 219-235.
12. Elkins, K.M.Nelson, D.J. (2002) Spectroscopic approaches to the study of the interaction of aluminum with humic substances. Coordination Chemistry Reviews, 228(2), 205-225.
13. Escobar, I. C., & Randall, A. A. (2001). Assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC): complementary measurements. Water research, 35(18), 4444-4454.
14. Gai, X. J., & Kim, H. S. (2008). The role of powdered activated carbon in enhancing the performance of membrane systems for water treatment. Desalination, 225(1), 288-300.
15. Galapate, R. P., Baes, A. U., & Okada, M. (2001). Transformation of dissolved organic matter during ozonation: effects on trihalomethane formation potential. Water Research, 35(9), 2201-2206.
16. Gallard, H., & von Gunten, U. (2002). Chlorination of natural organic matter: kinetics of chlorination and of THM formation. Water research, 36(1), 65-74.
17. Gerrity, D., Gamage, S., Holady, J. C., Mawhinney, D. B., Quiñones, O., Trenholm, R. A., & Snyder, S. A. (2011). Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection. Water research, 45(5), 2155-2165.
18. Hao L. Tang, Yuefeng F. Xie. (2016). Biologically active carbon filtration for haloacetic acid removal from swimming pool water. Science of the Total Environment 541 58–64.
19. Huo, S., He, Z., Su, J., Xi, B., & Zhu, C. (2013). Using artificial neural network models for eutrophication prediction. Procedia Environmental Sciences, 18, 310-316.
20. Iglesias, C., Torres, J. M., Nieto, P. G., Fernández, J. A., Muñiz, C. D., Piñeiro, J. I., & Taboada, J. (2014). Turbidity Prediction in a River Basin by Using Artificial Neural Networks: A Case Study in Northern Spain. Water Resources Management, 28(2), 319-331.
21. Imrie, C. E., Durucan, S., & Korre, A. (2000). River flow prediction using artificial neural networks: generalisation beyond the calibration range. Journal of Hydrology, 233(1), 138-153.
22. Jacangelo, J. G., Aieta, E. M., Carns, K. E., Cummings, E. W., &; Mallevialle, J. (1989). Assessing Hollow-Fiber Ultrafiltration for Participate Removal. Journal of the American Water Works Association, 68-75.
23. Kalkan, C., Yapsakli, K., Mertoglu, B., Tufan, D., & Saatci, A. (2011). Evaluation of biological activated carbon (BAC) process in wastewater treatment secondary effluent for reclamation purposes. Desalination, 265(1), 266-273.
24. Kawamura, S. (2000). Integrated design and operation of water treatment facilities. John Wiley & Sons.
25. Kirisits, M. J., Snoeyink, V. L., & Kruithof, J. C. (2000). The reduction of bromate by granular activated carbon. Water Research, 34(17), 4250-4260.
26. Kitis, M., Karanfil, T., Wigton, A., & Kilduff, J. E. (2002). Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation. Water Research, 36(15), 3834-3848.
27. Komulainen, H. (2004). Experimental cancer studies of chlorinated by-products. Toxicology, 198(1), 239-248.
28. Leenheer, J. A., Brown, G. K., MacCarthy, P., &; Cabaniss, S. E. (1998). Models of metal binding structures in fulvic acid from the Suwannee River, Georgia. Environmental Science &; Technology, 32(16), 2410-2416.
29. Liang, L., & Singer, P. C. (2003). Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environmental Science & Technology, 7(13), 2920-2928.
30. Mandal, S., Mahapatra, S. S., Sahu, M. K., & Patel, R. K. (2014). Artificial neural network modelling of As (III) removal from water by novel hybrid material. Process Safety and Environmental Protection.
31. Marhaba, T. F., &; Washington, M. B. (1998). Drinking water disinfection and by-products: history and current practice. Advances in Environmental Research, 2(1), 103-115.
32. Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A., & Sillanpää, M. (2011). An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 83(11), 1431-1442.
33. Metz, D. H., Reynolds, K., Meyer, M., & Dionysiou, D. D. (2011). The effect of UV/H2O2 treatment on biofilm formation potential. Water research, 45(2), 497-508.

34. Oliver, D. M., Page, T., Heathwaite, A. L., & Haygarth, P. M. (2010). Re-shaping models of E. coli population dynamics in livestock faeces: Increased bacterial risk to humans?. Environment International, 36(1), 1-7.
35. Page, D., & Dillon, P. J. (2007). Measurement of the biodegradable fraction of dissolved organic matter relevant to water reclamation via aquifers. CSIRO Water for a Healthy Country Flaship.
36. Park, N. S., Park, H., & Kim, J. S. (2003). Examining the effect of hydraulic turbulence in a rapid mixer on turbidity removal with CFD simulation and PIV analysis. Aqua- Journal of Water Supply: Research and Technology, 52(2), 95-108.
37. Patil, K., Deo, M. C., Ghosh, S., & Ravichandran, M. (2013). Predicting sea surface temperatures in the North Indian Ocean with nonlinear autoregressive neural networks. International Journal of Oceanography, 2013.
38. Pearce, G. K., Heijnen, M., & Reckhouse, J. (2002). Using ultrafiltration membrane technology to meet UK Cryptosporidium regulations. Membrane Technology, 2002(1), 6-9.
39. Pereira, R. D. O., de Alda, M. L., Joglar, J., Daniel, L. A., & Barceló, D. (2011). Identification of new ozonation disinfection byproducts of 17β-estradiol and estrone in water. Chemosphere, 84(11), 1535-1541.
40. R. Delatolla , C. Seguin , S. Springthorpe , E. Gorman , A. Campbell , I. Douglas.(2015). Disinfection byproduct formation during biofiltration cycle: Implications for drinking water production. Chemosphere 136 (2015) 190–197
41. Richardson, S. D. (2003). Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends in Analytical Chemistry, 22(10), 666-684.
42. Richardson, S. D., Plewa, M. J., Wagner, E. D., Schoeny, R. and DeMarini, D. M. (2007). Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Research, 636, 178-242.
43. Sánchez-Polo, M., Salhi, E., Rivera-Utrilla, J., & Von Gunten, U. (2006). Combination of ozone with activated carbon as an alternative to conventional advanced oxidation processes. Ozone: Science and Engineering, 28(4), 237-245.
44. Sagbo, O., Sun, Y., Hao, A., & Gu, P. (2008). Effect of PAC addition on MBR process for drinking water treatment. Separation and Purification Technology, 58(3), 320-327.
45. Sarkar, S., Blaney, L. M., Gupta, A., Ghosh, D., & SenGupta, A. K. (2007). Use of ArsenXnp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. Reactive and Functional Polymers, 67(12), 1599-1611.
46. Scheuring, M., Evans, R., Buzza, E., Movahed, B., Gigliotti, T., & Casson, L. (2000). Membrane filtration as posttreatment. Journal of the American Water Works Association, 92(8), 59-68.
47. Seo, G., Moon, C., Chang, S., & Lee, S. (2004). Long term operation of high concentration powdered activated carbon membrane bio-reactor for advanced water treatment. Water Science & Technology, 50(8), 81-87.
48. Stephenson, T. (2000). Membrane bioreactors for wastewater treatment.
49. Tang, S., Wang, X. M., Yang, H. W., & Xie, Y. F. (2013). Haloacetic acid removal by sequential zero-valent iron reduction and biologically active carbon degradation. Chemosphere, 90(4), 1563-1567.
50. Toor, R., & Mohseni, M. (2007). UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water. Chemosphere, 66(11), 2087-2095.
51. Tsai, H. H., Ravindran, V., Williams, M. D., & Pirbazari, M. (2004). Forecasting the performance of membrane bioreactor process for groundwater denitrification. Journal of Environmental Engineering and Science, 3(6), 507-521.
52. Tsai, Y. T., Weng, Y. H., Lin, A. Y. C. and Li, K. C. (2011). Electro-microfiltration treatment of water containing natural organic matter and inorganic particles. Desalination, 26, 133-138.
53. Tung, H. H., Unz, R. F. & Xie, Y. F. (2009). Evidences of HAAs Biodegradation in GAC Filtration. Journal of Environmental Management, 19, 59-66.
54. Twort, A. C., Ratnayaka, D. D., & Brandt, M. J. (2000). Water supply. Butterworth-Heinemann.
55. Van der Kooij, D. (2000). Biological stability: a multidimensional quality aspect of treated water. Water, air, and soil pollution, 123(1-4), 25-34.
56. Van Geluwe, S., Braeken, L., & Van der Bruggen, B. (2011). Ozone oxidation for the alleviation of membrane fouling by natural organic matter: A review. Water research, 45(12), 3551-3570.
57. Villanueva, C. M., Kogevinas, M., & Grimalt, J. O. (2003). Haloacetic acids and trihalomethanes in finished drinking waters from heterogeneous sources. Water Research, 37(4), 953-958.
58. Volk, C., Bell, K., Ibrahim, E., Verges, D., Amy, G., & LeChevallier, M. (2000). Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water. Water Research, 34(12), 3247-3257.
59. Von Gunten, U. (2003). Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Research, 37(7), 1469-1487.
60. Warton, B., Heitz, A., Joll, C., & Kagi, R. (2006). A new method for calculation of the chlorine demand of natural and treated waters. Water Research, 40(15), 2877-2884.
61. Weinrich, L. A., Giraldo, E., & LeChevallier, M. W. (2009). Development and application of a bioluminescence-based test for assimilable organic carbon in reclaimed waters. Applied and environmental microbiology, 75(23), 7385-7390.
62. Weinrich, L. A., Jjemba, P. K., Giraldo, E., & LeChevallier, M. W. (2010). Implications of organic carbon in the deterioration of water quality in reclaimed water distribution systems. Water Research, 44(18), 5367-5375.
63. Weng, C. H., Lin, Y. T., & Tzeng, T. W. (2009). Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder. Journal of hazardous materials, 170(1), 417-424.
64. Wu, G. D., & Lo, S. L. (2010). Effects of data normalization and inherent-factor on decision of optimal coagulant dosage in water treatment by artificial neural network. Expert Systems with Applications, 37(7), 4974-4983.
65. Yang, J. S., Yuan, D. X., & Weng, T. P. (2010). Pilot study of drinking water treatment with GAC, O3/BAC and membrane processes in Kinmen Island, Taiwan. Desalination, 263(1), 271-278.
66. Yiantsios, S. G., & Karabelas, A. J. (2001). An experimental study of humid acid and powdered activated carbon deposition on UF membranes and their removal by backwashing. Desalination, 140(2), 195-209.
67. Yu-qin Mao , Xiao-mao Wang , Xian-fen Guo , Hong-wei Yang , Yuefeng F. Xie .Characterization of haloacetaldehyde and trihalomethane formation potentials during drinking water treatment. Chemosphere 159 (2016) 378-384
68. Zhang, M., Li, C., Benjamin, M. M., & Chang, Y. (2003). Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment. Environmental science & technology, 37(8), 1663-1669.
69. Zhang, P., LaPara, T. M., Goslan, E. H., Xie, Y., Parsons, S. A., & Hozalski, R. M. (2009). Biodegradation of haloacetic acids by bacterial isolates and enrichment cultures from drinking water systems. Environmental science & technology, 43(9), 3169-3175.
70. 吳冠德,(2009),以類神經網路預測自來水場混凝加藥量及其影響因子之研究,國立臺灣大學環境工程學研究所。
71. 李宜玶,(2003),探討臭氧對天然有機物生物降解之影響,國立中興大學環境工程學系。
72. 李念勳,(2007),應用類神經網路於非點源污染預測模式及預測採樣之研究,國立成功大學環境工程學系。
73. 李泰毅,(2007),金門地區配水管網水質參數與微生物再生長之研究,國立臺灣大學公共衛生學院環境衛生研究所。
74. 周瑋陞,(2006),自來水水質分析調查及總三鹵甲烷之風險評估-以高雄市為例,國立中山大學環境工程研究所。
75. 林治宇,(2003),結合化學與生物處理方法處理半導體廠有機廢水之可行性評估,國立台灣大學環境工程學研究所。
76. 洪坤鈺,(2002),配水管網水質模式動力參數之研究,國立中興大學環境工程學系。
77. 高淑惠,(2005),海洋放流污水添加次氯酸鈉消毒劑之效益評析,國立中央大學環境工程研究所。
78. 許瓊文,(2008),應用類神經網路模擬高雄都會區臭氧濃度趨勢變化之研究,國立中山大學環境工程研究所。
79. 郭修志,(2006),自來水配水系統消毒副產物生成模式之研究,國立臺灣大學環境工程學研究所。
80. 黃鈺茹、黃登福,(2007),自來水中氯化消毒副產物之飲用安全性,自來水協會會刊,26(3),23-37。
81. 楊家瑜,(2008),高級淨水程序消毒副產物之生成研究,國立中山大學環境工程研究所。
82. 廖琇怡,(2005),高雄市臭氧特性與氣象因子之相關性探討,國立中山大學環境工程研究所。
83. 賴文亮,(2002),各種淨水程序對生物可分解有機質及消毒副產物之控制,國立成功大學環境工程學系。
84. 簡肇成,(2001),結合流體化結晶床與薄膜去除水中硬度之研究,私立淡江大學水資源與環境工程學系。
85. 行政院環境保護署,飲用水水質標準。
86. 葉怡成,(2009),類神經網路模式應用與實作,儒林圖書公司,台灣台北。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.154.171
論文開放下載的時間是 校外不公開

Your IP address is 3.17.154.171
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code