Responsive image
博碩士論文 etd-0611117-145225 詳細資訊
Title page for etd-0611117-145225
論文名稱
Title
利用微陣晶片尋找乳癌細胞轉移相關的長鏈非編碼核醣核酸
Identify Metastasis-related LncRNA in Breast Cancer by Microarray Approach
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-22
繳交日期
Date of Submission
2017-07-11
關鍵字
Keywords
非編碼核醣核酸、乳癌、長片段非編碼核醣核酸、LINC01420、癌症轉移
Non-coding RNA, Metastasis, LINC01420, Long non-coding RNA, Breast cancer
統計
Statistics
本論文已被瀏覽 5758 次,被下載 26
The thesis/dissertation has been browsed 5758 times, has been downloaded 26 times.
中文摘要
乳癌好發生於乳腺上皮組織,是女性中最常發生的癌症,轉移是導致癌症死亡的主要原因,也是在乳癌治療上的一大挑戰。在人體基因組中,只有約2 %的基因能轉譯出蛋白,稱為蛋白質編碼基因,而將近98 %的基因則為非編碼核醣核酸。目前非編碼核醣核酸的研究大多聚焦在小片段核糖核酸(MicroRNA)以及長片段非編碼核醣核酸(Long non-coding RNA),這些非編碼核醣核酸在基因的調控、正常的細胞功能以及癌症的發展均扮演重要的角色,其中某些長片段非編碼核醣核酸已被報導在許多腫瘤中會異常表現,並且在癌細胞生長與轉移中扮演重要的角色。然而仍然有許多參與在乳癌轉移的長片段非編碼核醣核酸未被發現,並且生物功能尚未清楚。在這個研究中,我們利用微陣列方法(Microarray)分析兩株轉移能力不同的乳癌細胞株,分別為MB-231-P和MB-231-IV2-1,找出了213個在MB-231-IV2-1細胞中高度表現以及301個低度表現的長片段非編碼核醣核酸。另外利用The Cancer Genome Atlas (TCGA)資料庫,我們進一步分析這些長片段非編碼核醣核酸在乳癌中的表現量,我們得到一些與乳癌轉移相關的長片段非編碼核醣核酸。其中我們選擇LINC01420,進一步探討在乳癌中的生物功能,首先,利用即時定量PCR分析,我們發現在乳癌病人檢體中,LINC01420的表現量明顯比正常組織高,接著利用cDNA末端快速擴增(RACE)技術定出LINC01420基因序列全長,我們找出LINC01420有三種不同的選擇性剪接異構物(Alternative splicing isoform)。利用細胞實驗發現,在乳癌細胞中抑制LINC01420基因表現會使乳癌細胞週期停滯在S期以抑制乳癌細胞生長。其中若抑制LINC01420-V1和 -V3這兩個異構物,對於細胞生長以及細胞侵犯的能力上有顯著抑制效果。這結果提供我們認為LINC01420-V1和 -V3這兩個isoform在乳癌上可能扮演重要的調控角色,以及外顯子2可能為主要致癌基因功能區。並且LINC01420在乳癌腫瘤增生上可能扮演功能上致癌基因角色。
Abstract
Breast cancer occurs in mammary gland epithelial tissue and is the most commonly diagnosed cancer in women throughout the world. Previous studies indicated that invasion of cancer cells was the major cause of the death, which had been a major challenge in the treatment of breast cancer. In human genome, recent studies reveal that there is < 2 % of the total genome sequence as protein-coding genes, however, at least 98 % of genome are transcribed into non-coding RNA (ncRNA). So far, the study of ncRNA is mainly concentrated on the microRNA (miRNA) and long non-coding RNA (lncRNA). An increasing number of researches reveal that ncRNAs have been shown to play an important role in gene regulation, normal cellular functions and disease processes. However, the detail biological function of lncRNA involving in breast metastasis is still unclear. In this study, we performed the expression profiles of two breast cancer cell lines, MB-231-P and MB-231-IV2-1, by microarray approach (Agilent SurePrint G3 Human V2 GE; including 34092 protein-coding genes and 8715 lncRNAs). After finishing the microarray profiling, we identified about 213 lncRNAs upregulated and 301 lncRNAs downregulated in MB-231-IV2-1 cell line compared to MB-231-P, respectively. Finally, we successfully identified several metastasis-related lncRNA candidates according microarray data and The Cancer Genome Atlas (TCGA). Among them, LINC01420 was selected for further study in this study. We assessed the expression levels of LINC01420 in breast cancer tissues by real-time PCR approach. Our data revealed that the expression levels of LINC01420 were significantly increased in breast cancer compared with adjacent normal tissues. We further identified the full length of LINC01420 by 5’ and 3’ rapid amplification of cDNA ends (RACE) in breast cancer cell. Our results revealed that LINC01420 could generate three splicing transcripts (V1, V2 and V3) via alternative splicing. Furthermore, knockdown of LINC01420 could suppress breast cancer cell growth by inducing cell cycle arrest at S phase. Interesting, the cell growth and the invasion ability of MB-231-IV2-1 cell significantly decreased after LINC01420-V1 and -V3 knockdown. These results implied that LINC01420-V1 and -V3 might be critical isoforms and exon 2 might be a functional oncogene region involving in modulating biological function in breast cancer. Our results suggest that LINC01420 might be a functional oncogene in breast tumorigenesis.
目次 Table of Contents
Chinese Abstract……………………………………………………………….....i
English Abstract……………………………………………………………………....ii
Table of contents………………………………………………………………..... iv
List of Figures……………………………………………………………………...vii
List of Tables…………………………………………………………………………....ix
I. Introduction………………………………………………………………………1
II. Specific Aims……………………………………………………………………….6
III. Methods & Materials
3.1 Cell culture……………………………………………………………………..7
3.2 Transwell invasion assay……………………………………………….....7
3.3 RNA extraction…………………………………………………………………8
3.4 Reverse transcription………………………………………………………………..8
3.5 Real-time PCR analysis……………………………………………………...8
3.6 Western blot…………………………………………...9
3.7 Microarray…………………………………………………………….............10
3.8 Subcellular fractionation localization…………………………………...10
3.9 For full length, RNA ligase-mediated rapid amplification of 5’ and 3’ cDNA ends (RLM-RACE)…………………………………………………………….............11
3.10 LINC01420 cDNA Sequences……………………………………………….12
3.10.1 Isoform-1……………………………………………………………..12
3.10.2 Isoform-2………………………………………………………….12
3.10.3 Isoform-3………………………………………………………….13
3.11 Polymerase chain reaction, PCR………………………………………….….14
3.12 RNA Interference……………………………………………………….........14
3.13 Transfection………………………………………………….............…...14
3.14 Proliferation……………………………………………………………….…15
3.15 Colony formation assay………………………………………………...……15
3.16 Image flow cytometry assay…………………………………………………16
3.17 Chemicals……………………………………………………………………16
3.18 Cell Synchronization……………………………………………………..….16
IV. Results
4.1 Generation of lncRNA expression profiles in breast cancer samples
4.1.1 MB-231-P and MB-231-IV2-1 cells have different invasive ability..…17
4.1.2 Identify oncogene and tumor suppressor gene in breast cancer…….....18
4.1.3 The effects of protein-coding gene on different pathways…………18
4.2 Identification of metastasis-associated lncRNA candidates in breast cancer
4.2.1 LINC01420 is overexpression in breast cancer………………….....….19
4.2.2 Examine the subcellular fractionation localization of LINC01420..19
4.2.3 Identify full length of LINC01420 sequence………………………20
4.3 The biological role of LINC01420 in breast cancer
4.3.1 Knockdown of LINC01420 suppresses breast cancer cell proliferation…………………………………………………………………....21
4.3.2 Knockdown of LINC01420 induces cell cycle arrest at S-phase in breast cancer cell……………………………………………………………………..23
4.3.3 Knockdown of LINC01420 inhibits invasion ability on breast cancer cell………………………………………………………………………………...25
V. Discussion……………………………………………………………………..26
VI. Conclusion……………………………………………………………………...…32
VII. References………………………………………………………………..……33
VIII. Tables……………………………………………………………..……………41
IX. Figures…………………………………………………………………………49
參考文獻 References
1. Jemal, A., et al., Global cancer statistics. CA: a cancer journal for clinicians, 2011. 61(2): p. 69-90.
2. Ye, N., et al., Functional roles of long non-coding RNA in human breast cancer. Asian Pacific Journal of Cancer Prevention, 2014. 15(15): p. 5993-5997.
3. Cai, Y., J. He, and D. Zhang, Long noncoding RNA CCAT2 promotes breast tumor growth by regulating the Wnt signaling pathway. OncoTargets & Therapy, 2015. 8.
4. Gibb, E.A., C.J. Brown, and W.L. Lam, The functional role of long non-coding RNA in human carcinomas. Molecular cancer, 2011. 10(1): p. 38.
5. Zhang, H., et al., Long non-coding RNA: a new player in cancer. Journal of hematology & oncology, 2013. 6(1): p. 37.
6. Jia, H., et al., Genome-wide computational identification and manual annotation of human long noncoding RNA genes. Rna, 2010. 16(8): p. 1478-1487.
7. Dey, B.K., A.C. Mueller, and A. Dutta, Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription, 2014. 5(4): p. e944014.
8. Schmitz, S.U., P. Grote, and B.G. Herrmann, Mechanisms of long noncoding RNA function in development and disease. Cellular and Molecular Life Sciences, 2016. 73(13): p. 2491-2509.
9. Ponting, C.P., P.L. Oliver, and W. Reik, Evolution and functions of long noncoding RNAs. Cell, 2009. 136(4): p. 629-641.
10. Hauptman, N. and D. Glavač, Long non-coding RNA in cancer. International journal of molecular sciences, 2013. 14(3): p. 4655-4669.
11. Derrien, T., et al., The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome research, 2012. 22(9): p. 1775-1789.
12. Wilusz, J.E., H. Sunwoo, and D.L. Spector, Long noncoding RNAs: functional surprises from the RNA world. Genes & development, 2009. 23(13): p. 1494-1504.
13. Gibb, E.A., et al., Human cancer long non-coding RNA transcriptomes. PloS one, 2011. 6(10): p. e25915.
14. Prensner, J.R. and A.M. Chinnaiyan, The emergence of lncRNAs in cancer biology. Cancer discovery, 2011. 1(5): p. 391-407.
15. Qi, P. and X. Du, The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Modern Pathology, 2013. 26(2): p. 155-165.
16. Rinn, J.L., et al., Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 2007. 129(7): p. 1311-1323.
17. Tsai, M.-C., et al., Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010. 329(5992): p. 689-693.
18. Gupta, R.A., et al., Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010. 464(7291): p. 1071-1076.
19. Zhou, Y., X. Zhang, and A. Klibanski, MEG3 noncoding RNA: a tumor suppressor. Journal of molecular endocrinology, 2012. 48(3): p. R45-R53.
20. Ling, H., et al., CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome research, 2013. 23(9): p. 1446-1461.
21. Schneider, C., R.M. King, and L. Philipson, Genes specifically expressed at growth arrest of mammalian cells. Cell, 1988. 54(6): p. 787-793.
22. Mourtada-Maarabouni, M., et al., GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 2009. 28(2): p. 195-208.
23. Chan, S., et al., MicroRNA-149 targets GIT1 to suppress integrin signaling and breast cancer metastasis. Oncogene, 2014. 33(36): p. 4496-4507.
24. Li, Y., et al., Epithelial–mesenchymal transition markers expressed in circulating tumor cells in hepatocellular carcinoma patients with different stages of disease. Cell death & disease, 2013. 4(10): p. e831.
25. Chen, L.-L., Linking Long Noncoding RNA Localization and Function. Trends in Biochemical Sciences, 2016. 41(9): p. 761-772.
26. Chen, L.-L. and G.G. Carmichael, Decoding the function of nuclear long non-coding RNAs. Current opinion in cell biology, 2010. 22(3): p. 357-364.
27. Jeffrey, P.D., et al., Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature, 1995. 376(6538): p. 313.
28. Coqueret, O., New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends in cell biology, 2003. 13(2): p. 65-70.
29. Pacek, M., T.A. Prokhorova, and J.C. Walter, Cdk1: unsung hero of S phase? Cell Cycle, 2004. 3(4): p. 399-401.
30. Gavet, O. and J. Pines, Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Developmental cell, 2010. 18(4): p. 533-543.
31. Westrate, L.M., et al., Persistent mitochondrial hyperfusion promotes G2/M accumulation and caspase-dependent cell death. PloS one, 2014. 9(3): p. e91911.
32. Bray, F., et al., Global estimates of cancer prevalence for 27 sites in the adult population in 2008. International journal of cancer, 2013. 132(5): p. 1133-1145.
33. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA: a cancer journal for clinicians, 2016. 66(1): p. 7-30.
34. Schmitt, A.M. and H.Y. Chang, Long noncoding RNAs in cancer pathways. Cancer Cell, 2016. 29(4): p. 452-463.
35. Wapinski, O. and H.Y. Chang, Long noncoding RNAs and human disease. Trends in cell biology, 2011. 21(6): p. 354-361.
36. Mourtada-Maarabouni, M., et al., Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). Journal of cell science, 2008. 121(7): p. 939-946.
37. Adriaenssens, E., et al., H19 overexpression in breast adenocarcinoma stromal cells is associated with tumor values and steroid receptor status but independent of p53 and Ki-67 expression. The American journal of pathology, 1998. 153(5): p. 1597-1607.
38. Loi, S., et al., Definition of clinically distinct molecular subtypes in estrogen receptor–positive breast carcinomas through genomic grade. Journal of clinical oncology, 2007. 25(10): p. 1239-1246.
39. Silva, J.M., et al., LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA biology, 2011. 8(3): p. 496-505.
40. Wang, F., et al., UCA1, a non‐protein‐coding RNA up‐regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS letters, 2008. 582(13): p. 1919-1927.
41. Benoît, M.-H., et al., Global analysis of chromosome X gene expression in primary cultures of normal ovarian surface epithelial cells and epithelial ovarian cancer cell lines. International journal of oncology, 2007. 30(1): p. 5-18.
42. Godinho, M., et al., Characterization of BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells. Journal of cellular physiology, 2011. 226(7): p. 1741-1749.
43. Yang, L., et al., High Expression of LINC01420 indicates an unfavorable prognosis and modulates cell migration and invasion in nasopharyngeal carcinoma. Journal of Cancer, 2017. 8(1): p. 97.
44. Kawakami, T., et al., Characterization of loss-of-inactive X in Klinefelter syndrome and female-derived cancer cells. Oncogene, 2004. 23(36): p. 6163-6169.
45. Ren, C., et al., Functions and mechanisms of long noncoding RNAs in ovarian cancer. International journal of gynecological cancer, 2015. 25(4): p. 566-569.
46. Tantai, J., et al., Combined identification of long non-coding RNA XIST and HIF1A-AS1 in serum as an effective screening for non-small cell lung cancer. International journal of clinical and experimental pathology, 2015. 8(7): p. 7887.
47. Yao, Y., et al., Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152. Cancer letters, 2015. 359(1): p. 75-86.
48. Zhu, Z., et al., Discovery of a novel genetic susceptibility locus on X chromosome for systemic lupus erythematosus. Arthritis research & therapy, 2015. 17(1): p. 349.
49. Brooks, W.H. and Y. Renaudineau, Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Frontiers in genetics, 2015. 6: p. 22.
50. Toren, P. and A. Zoubeidi, Targeting the PI3K/Akt pathway in prostate cancer: Challenges and opportunities (Review). International journal of oncology, 2014. 45(5): p. 1793-1801.
51. Barnum, K.J. and M.J. O’Connell, Cell cycle regulation by checkpoints. Cell Cycle Control: Mechanisms and Protocols, 2014: p. 29-40.
52. De Boer, L., et al., Cyclin A/cdk2 coordinates centrosomal and nuclear mitotic events. Oncogene, 2008. 27(31): p. 4261-4268.
53. Santamaría, D., et al., Cdk1 is sufficient to drive the mammalian cell cycle. Nature, 2007. 448(7155): p. 811-815.
54. Elledge, S.J., Cell cycle checkpoints: preventing an identity crisis. Science, 1996. 274(5293): p. 1664.
55. Sørensen, C.S. and R.G. Syljuåsen, Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic acids research, 2012. 40(2): p. 477-486.
56. Watanabe, N., M. Broome, and T. Hunter, Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle. The EMBO journal, 1995. 14(9): p. 1878.
57. Tyagi, A., et al., Resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR–Chk1/2–Cdc25C pathway as a central mechanism for S phase arrest in human ovarian carcinoma Ovcar-3 cells. Carcinogenesis, 2005. 26(11): p. 1978-1987.
58. Yuan, S.X., et al., Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients' poor recurrence‐free survival after hepatectomy. Hepatology, 2012. 56(6): p. 2231-2241.
59. De Kok, J.B., et al., DD3PCA3, a very sensitive and specific marker to detect prostate tumors. Cancer research, 2002. 62(9): p. 2695-2698.
60. Geng, Y., et al., Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. Journal of International Medical Research, 2011. 39(6): p. 2119-2128.
61. Ishibashi, M., et al., Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma. Oncology reports, 2013. 29(3): p. 946-950.
62. Kogo, R., et al., Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer research, 2011. 71(20): p. 6320-6326.
63. Niinuma, T., et al., Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer research, 2012. 72(5): p. 1126-1136.
64. Müller-Tidow, C., et al., Genome-wide screening for prognosis-predicting genes in early-stage non-small-cell lung cancer. Lung Cancer, 2004. 45: p. S145-S150.
65. Schmidt, L.H., et al., The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. Journal of thoracic oncology, 2011. 6(12): p. 1984-1992.
66. Lai, M.-c., et al., Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Medical oncology, 2012. 29(3): p. 1810-1816.
67. Gutschner, T., M. Hämmerle, and S. Diederichs, MALAT1—a paradigm for long noncoding RNA function in cancer. Journal of molecular medicine, 2013. 91(7): p. 791-801.
68. Zhang, L., et al., Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis, 2012: p. bgs381.
69. Matouk, I.J., et al., The H19 non-coding RNA is essential for human tumor growth. PloS one, 2007. 2(9): p. e845.
70. Hibi, K., et al., Loss of H19 imprinting in esophageal cancer. Cancer research, 1996. 56(3): p. 480-482.
71. Prensner, J.R., et al., Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nature biotechnology, 2011. 29(8): p. 742-749.
72. Braconi, C., et al., Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proceedings of the National Academy of Sciences, 2011. 108(2): p. 786-791.
73. Flockhart, R.J., et al., BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome research, 2012. 22(6): p. 1006-1014.
74. Yang, F., et al., Characterization of a carcinogenesis-associated long non-coding RNA. RNA biology, 2012. 9(1): p. 110-116.
75. Ellis, B.C., P.L. Molloy, and L.D. Graham, CRNDE: a long non-coding RNA involved in cancer, neurobiology, and development. Frontiers in genetics, 2012. 3: p. 270.
76. Yang, F., et al., Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. Journal of cancer research and clinical oncology, 2013. 139(3): p. 437-445.
77. Du, Y., et al., Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18. Journal of Biological Chemistry, 2012. 287(31): p. 26302-26311.
78. Wang, Y., et al., Long non-coding RNA UCA1a (CUDR) promotes proliferation and tumorigenesis of bladder cancer. International journal of oncology, 2012. 41(1): p. 276.
79. Huarte, M., et al., A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010. 142(3): p. 409-419.
80. Zhang, X., et al., Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer research, 2010. 70(6): p. 2350-2358.
81. Wang, P., Z. Ren, and P. Sun, Overexpression of the long non‐coding RNA MEG3 impairs in vitro glioma cell proliferation. Journal of cellular biochemistry, 2012. 113(6): p. 1868-1874.
82. Braconi, C., et al., microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene, 2011. 30(47): p. 4750-4756.
83. Benetatos, L., et al., CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leukemia research, 2010. 34(2): p. 148-153.
84. Poliseno, L., et al., A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 2010. 465(7301): p. 1033-1038.
85. Jendrzejewski, J., et al., The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proceedings of the National Academy of Sciences, 2012. 109(22): p. 8646-8651.
86. Merry, C.R., et al., DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Human molecular genetics, 2015: p. ddv343.
87. Hu, X., et al., A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer cell, 2014. 26(3): p. 344-357.
88. Wang, Y., et al., The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell stem cell, 2015. 16(4): p. 413-425.
89. Marín-Béjar, O., et al., Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2. Genome biology, 2013. 14(9): p. R104.
90. Sauvageau, M., et al., Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife, 2013. 2: p. e01749.
91. Yang, L., et al., lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature, 2013. 500(7464): p. 598-602.
92. Prensner, J.R., et al., The lncRNAs PCGEM1 and PRNCR1 are not implicated in castration resistant prostate cancer. Oncotarget, 2014. 5(6): p. 1434-1438.
93. Prensner, J.R., et al., The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nature genetics, 2013. 45(11): p. 1392-1398.
94. Iacoangeli, A., et al., BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis, 2004. 25(11): p. 2125-2133.
95. Chen, W., et al., Expression of neural BC200 RNA in human tumours. The Journal of pathology, 1997. 183(3): p. 345-351.
96. Kino, T., et al., Noncoding RNA Gas5 is a growth arrest and starvation-associated repressor of the glucocorticoid receptor. Science signaling, 2010. 3(107): p. ra8.
97. Lottin, S., et al., Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis, 2002. 23(11): p. 1885-1895.
98. Ariel, I., et al., The imprinted H19 gene is a market of early recurrence in human bladder carcinoma. Journal of Clinical Pathology, 2000. 53(6): p. 320.
99. Lustig-Yariv, O., et al., The expression of the imprinted genes H19 and IGF-2 in choriocarcinoma cell lines. Is H19 a tumor suppressor gene? Oncogene, 1997. 15(2).
100. Smith, D.I., A Long Stress-Responsive Non-Coding Transcript (NiT 5) and Its Role in the Development of Breast Cancer. 2011, DTIC Document.
101. Xu, S., et al., Downregulation of long noncoding RNA MALAT1 induces epithelial-to-mesenchymal transition via the PI3K-AKT pathway in breast cancer. International journal of clinical and experimental pathology, 2015. 8(5): p. 4881.
102. Tripathi, V., et al., The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Molecular cell, 2010. 39(6): p. 925-938.
103. Tripathi, V., et al., Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet, 2013. 9(3): p. e1003368.
104. Nakagawa, S., et al., Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. The Journal of cell biology, 2011: p. jcb. 201011110.
105. Nakagawa, S., et al., The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development, 2014. 141(23): p. 4618-4627.
106. Huang, J., et al., Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell death & disease, 2014. 5(1): p. e1008.
107. Erwin, J.A. and J.T. Lee, New twists in X-chromosome inactivation. Current opinion in cell biology, 2008. 20(3): p. 349-355.
108. Yildirim, E., et al., Xist RNA is a potent suppressor of hematologic cancer in mice. Cell, 2013. 152(4): p. 727-742.
109. Askarian-Amiri, M.E., et al., SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. Rna, 2011. 17(5): p. 878-891.
110. Hansji, H., et al., ZFAS1: a long noncoding RNA associated with ribosomes in breast cancer cells. Biology Direct, 2016. 11(1): p. 62.
111. Bedrosian, J.W., et al., CCAT2, a novel long non-coding RNA in breast cancer: expression study and clinical correlations. 2013.
112. Xing, Z., et al., lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell, 2014. 159(5): p. 1110-1125.
113. Liu, B., et al., A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer cell, 2015. 27(3): p. 370-381.
114. Dijkstra, J.M. and D.B. Alexander, The “NF-ĸ B interacting long noncoding RNA”(NKILA) transcript is antisense to cancer-associated gene PMEPA1. F1000Research, 2015. 4.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code