Responsive image
博碩士論文 etd-0611117-202552 詳細資訊
Title page for etd-0611117-202552
論文名稱
Title
1.24 wt.%矽與2.54 wt.%矽非方向性電磁鋼片之冷軋與退火集合組織及磁性質研究
Investigation of Cold-Rolled and Annealed Texture and Magnetic Properties of 1.24 wt.% Si and 2.54 wt.% Si Non-oriented Electrical Steels
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
194
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-05
繳交日期
Date of Submission
2017-07-12
關鍵字
Keywords
背向電子繞射分析、晶粒成長、再結晶、磁性質、集合組織、非方向性電磁鋼片
non-oriented electrical steel, recrystallization, texture, grain growth, EBSD analysis, magnetic property
統計
Statistics
本論文已被瀏覽 5652 次,被下載 31
The thesis/dissertation has been browsed 5652 times, has been downloaded 31 times.
中文摘要
本研究主要探討軋延與退火處理對於非方向性電磁鋼片內部集合組織與磁性質的影響,軋延會使多晶材料具有優選方位,而不同方位的晶粒對於磁性質的影響也會有所差異。
為探討1.24 wt.%矽與2.54 wt.%矽非方向性電磁鋼片 (non-oriented electrical steel, NOES) 熱軋延後之冷軋與再結晶集合組織及磁性質之變化,本研究分別使用化學成分為1.24 wt.%矽與2.54 wt.%矽的非方向性電磁鋼片經熱軋延與連續退火 (annealing pickling line, APL) 製程後,再經過數道冷軋延達到裁減率依序為78%與85%。透過紅外光加熱爐進行退火處理,並研究退火溫度620°C — 900°C之間再結晶與晶粒成長階段試片縱深方向上之集合組織分佈。以X光繞射儀之極圖 (pole figure) 分析進行巨觀集合組織量測,對試片的表層 (surface layer) 進行極圖量測,為了使X-ray可以進而對試片的次表層 (subsurface layer) 及中心層 (mid-plane layer) 進行量測,並以研磨 (griding) 方式去除試片表層,最後使用軟體將各個部分的集合組織量化並統計,觀察其縱深方向的集合組織分佈;以掃描式電子顯微鏡附加背向電子散射分析微觀集合組織,觀察試片橫截面 (cross section plane) 上晶粒 (grain) 之菊池線 (Kikuchi line) 所組成的背向散射電子繞射影像 (electron backscatter diffraction pattern, EBSP) ,結合軟體的應用,分析所觀察到晶粒的方位 (orientation) ,而退火後的試片將觀察其再結晶晶粒 (recrystallized grain) 的集合組織分佈。磁性量測實驗則測量電磁鋼片之磁感應強度B50與鐵損值W15/50。
理論上,對於磁性質發展有正向幫助的集合組織為Cube方位與Goss方位。巨觀與微觀集合組織分析的結果,1.24 wt.%矽之電磁鋼片於再結晶階段與晶粒成長階段皆具有較高的Cube與Goss方位的強度及較多的Cube與Goss方位的晶粒。
磁性量測的結果顯示,無論是沿著電磁鋼片的RD方向磁化或TD方向磁化, 1.24 wt.%矽電磁鋼片皆具有較高的磁感應強度,由此可知,1.24 wt.%矽電磁鋼片經過退火再結晶後的磁性表現較優異。
Abstract
This study mainly focuses on the textures and magnetic properties of non-oriented electrical steels (NOES) which were rolled and annealed treatment. Polycrystalline materials usually have preferred orientations after rolling, and different orientations of the grains can affect the magnetic properties differently.
In order to understand the variation of cold-rolled and recrystallized texture and magnetic properties of NOES hot-rolled which have 1.24 wt.% Si and 2.54 wt.% Si content. This study used NOES which the chemical composition are 1.24 wt.% Si and 2.54 wt.%Si hot-rolled and APL (annealing pickling line) treatment, and then cold rolled to 78% and 85% reduction by many passes, respectively. Infrared light heating furnace was applied to perform annealing experiments at the temperature ranges of 620°C and 900°C on the NOES to investigate the textures in the through-thickness direction, which included the recrystallized and the grain growth stages. By using X-ray diffractometer (XRD) pole figures to measure the macrotexture, and measure the surface layer of specimen. In order to measure the subsurface layer and mid-plane layer of the specimen, removing the surface layer by griding method. Finally, applied to the software and quantified and add up the texture component in each position of the specimen, and the observe the distribution of the texture in through-thickness direction. By using field emission gun scanning electron microscope (FEG-SEM) equipped on backscatter electron diffraction (EBSD) to analyze microtexture, observing the grain and analysing its Kikuchi line which consisted to electron backscatter diffraction pattern on the cross section plane of specimen, applied to software to analyze the grain orientation. And observing the texture distribution of recrystallized grains in annealed specimen. In the magnetic properties experiment, the magnetic induction, B50 and iron loss, W15/50 were measured.
Theoretically, the texture components which can improve the magnetic properties are Cube-orientation and Goss-orientation. In the results of macro-and micro-texture analyses, the NOES hot-rolled in single phase area has higher Cube and Goss orientation intensities, and has more Cube and Goss orientated grains through the stage of recrystallization and grain growth. The results of the magnetic properties reveal that no matter the measuring direction is along RD or TD of the NOES, the 1.24 wt.% silicon NOES which was hot-rolled in single phase area has the higher magnetic induction. Thus, the NOES hot-rolled in single phase area and followed by the subsequent process has better magnetic properties.
目次 Table of Contents
目錄
第一章、前言 ................................ ................................ ............................ 1
第二章、文獻回顧 第二章、文獻回顧 ................................ ................................ .................... 3
2-1. 電磁鋼片特性 ............................................................................................. 3
2-1-1. 磁滯損 (hysteresis loss) ............................................................................. 3
2-1-2. 渦流損 (Eddy current loss) ........................................................................ 4
2-2. 集合組織定義 ............................................................................................. 4
2-3. 磁性質與集合組織之間的關係 ................................................................. 5
2-4. 冷軋 ............................................................................................................. 8
2-4-1. 冷軋對微結構之影響 ................................................................................. 8
2-4-2. 冷軋對集合組織之影響 ............................................................................. 9
2-5. 退火 (annealing) ......................................................................................... 9
2-5-1. 回復 (recovery) ........................................................................................ 10
2-5-2. 再結晶 (recrystallization) ........................................................................ 10
2-5-2-1. 再結晶之微觀構 ................................ ................................ ................... 10
2-5-2-2. 再結晶之集合組織 ................................ ................................ ................... 11
2-5-3. 晶粒成長 (grain growth) .......................................................................... 13
2-5-3-1. 晶粒成長階段之微觀結構 ................................ ................................ ....... 13
2-5-3-2. 晶粒成長階段之集合組織 ................................ ................................ ....... 14
2-6. 利用EBSD分析電磁鋼片之集合組織 ................................................... 14
2-7. 以變形結構之高能量區域預測再結晶成核位置 ................................... 18
2-8. 以次結構位置預測潛在再結晶成核點 ................................................... 22
第三章 研究目的 ................................ ................................ .................. 24
vi
第四章 實驗方法及步驟 ................................ ................................ ...... 26
4-1. 實驗樣品 ................................................................................................... 26
4-2. 實驗樣品製程 ........................................................................................... 26
4-2-1. 低矽電磁鋼片 ........................................................................................... 26
4-2-2. 高矽電磁鋼片 ........................................................................................... 26
4-3. 實驗方法 ................................................................................................... 26
4-3-1. 冷軋 ........................................................................................................... 26
4-3-2. 試片退火處理 ........................................................................................... 27
4-3-3. 微硬度量測 ............................................................................................... 27
4-3-4. X光繞射分析 ........................................................................................... 27
4-3-5. X光繞射極圖分析 ................................................................................... 28
4-3-5-1. 集合組織統計 ................................ ................................ ........................... 29
4-3-5-2. 磁異向能計算 ................................ ................................ ........................... 29
4-3-6. 掃描式電子顯微鏡之背向散射電子繞射分析 ....................................... 29
4-3-7. 背向散射電子繞射晶粒方位分析 ........................................................... 30
4-3-7-1. 反極圖地計算 ................................ ................................ ....................... 30
4-3-7-2. 集合組織分析 ................................ ................................ ........................... 30
4-3-7-3. 再結晶 分析 ................................ ................................ ............................... 31
4-3-7-4. 再結晶比例計算 ................................ ................................ ....................... 31
4-3-7-5. 冷軋變形結構中 的 KAM+HMR KAM+HMR KAM+HMR ................................ ............................. 32
4-3-7-6. 冷軋變形結構中 的 DIG+GAMDIG+GAMDIG+GAMDIG+GAMDIG+GAM DIG+GAM ................................ ............................... 32
4-3-8. 磁性質量測 ............................................................................................... 33
第五章、 1.24 wt.%1.24 wt.%1.24 wt.%1.24 wt.%1.24 wt.%1.24 wt.%1.24 wt.% 矽之電磁鋼片實驗結果 矽之電磁鋼片實驗結果 矽之電磁鋼片實驗結果 ................................ ......... 34
5-1. 熱軋退火 ................................................................................................... 34
5-1-1. 巨觀集合組織 ........................................................................................... 34
vii
5-1-2. 微觀結構 ................................................................................................... 34
5-1-3. 微觀集合組織 ........................................................................................... 34
5-2. 冷軋 ........................................................................................................... 35
5-2-1. 巨觀集合組織 ........................................................................................... 35
5-2-2. 微觀結構 ................................................................................................... 35
5-2-3. 微觀集合組織 ........................................................................................... 35
5-2-4. 晶粒方位差 ............................................................................................... 36
5-2-5. 磁性質 ....................................................................................................... 36
5-3. 微硬度曲線 ............................................................................................... 36
5-4. 退火處理 — 再結晶階段 ....................................................................... 36
5-4-1. 巨觀集合組織 ........................................................................................... 37
5-4-1-1. ODF 圖 ................................ ................................ ................................ ...... 37
5-4-1-2. 試片縱深方向之集合組織 ................................ ................................ ....... 38
5-4-1-3. 探討集合組織隨退火溫度之變化 ................................ ........................... 39
5-4-1-4. 集合組織 fiber fiber在尤拉空間中的分佈 在尤拉空間中的分佈 ................................ ..................... 40
5-4-2. 微觀結構 ................................................................................................... 42
5-4-3. 微觀集合組織 ........................................................................................... 42
5-4-3-1. 反極圖 地................................ ................................ ............................... 42
5-4-3-2. 再結晶粒的空間分佈 ................................ ................................ ........... 43
5-4-3-3. 退火集合組織演化 ................................ ................................ ................... 44
5-4-3-4. 晶粒方位分佈函數圖 ................................ ................................ ............... 45
5-4-3-5. 再結晶粒與集合組織統計 ................................ ........................... 45
5-4-3-6. 晶粒方位差 ................................ ................................ ............................... 46
5-4-4. 磁性質 ....................................................................................................... 47
5-4-4-1. 磁感應強度 (B50) 與鐵損值 與鐵損值 (W15/50) ................................ .................. 47
5-4-4-2. 鐵損值與再結晶粒尺寸相對關係 ................................ ....................... 47
viii
5-4-4-3. 磁異向能 ................................ ................................ ................................ ... 47
5-4-4-4. 集合組織對於磁異向能的貢獻 ................................ ............................... 48
5-5. 退火處理 — 晶粒成長階段 ................................................................... 48
5-5-1. 巨觀集合組織 ........................................................................................... 49
5-5-1-1. ODF 圖 ................................ ................................ ................................ ...... 49
5-5-1-2. 集合組織分佈 ................................ ................................ ........................... 49
5-5-2. 微觀結構 ................................................................................................... 50
5-5-3. 微觀集合組織 ........................................................................................... 50
5-5-3-1. 晶粒方位分 佈函數圖 ................................ ................................ ............... 50
5-5-3-2. 晶粒方位差 ................................ ................................ ............................... 50
5-5-4. 磁性質 ....................................................................................................... 50
5-5-4-1. 磁感應強度 (B50) 與鐵損值 與鐵損值 (W15/50) ................................ .................. 50
5-5-4-2. 鐵損值與晶粒尺寸相對關係 ................................ ................................ ... 51
5-5-4-3. 磁異向能 ................................ ................................ ................................ ... 51
第六章 2.54 wt.%2.54 wt.% 2.54 wt.%2.54 wt.%2.54 wt.%2.54 wt.% 矽之電磁鋼片實驗結果 矽之電磁鋼片實驗結果 矽之電磁鋼片實驗結果 ................................ ......... 52
6-1. 熱軋退火 ................................................................................................... 52
6-1-1. 巨觀集合組織 ........................................................................................... 52
6-1-2. 微觀結構 ................................................................................................... 52
6-1-3. 微觀集合組織 ........................................................................................... 52
6-2. 冷軋 ........................................................................................................... 53
6-2-1. 巨觀集合組織 ........................................................................................... 53
6-2-2. 微觀結構 ................................................................................................... 53
6-2-3. 微觀集合組織 ........................................................................................... 53
6-2-4. 晶粒方位差 ............................................................................................... 53
6-2-5. 磁性質 ....................................................................................................... 54
ix
6-3. 微硬度曲線 ............................................................................................... 54
6-4. 退火處理 — 再結晶階段 ....................................................................... 54
6-4-1. 巨觀集合組織 ........................................................................................... 54
6-4-1-1. ODF 圖 ................................ ................................ ................................ ...... 54
6-4-1-2. 試片縱深方 向之集合組織分佈 ................................ ............................... 55
6-4-1-3. 探討不同溫度集合組織之分佈 ................................ ............................... 56
6-4-1-4. 集合組織 fiber fiber在尤拉空間中的分佈 在尤拉空間中的分佈 ................................ ..................... 56
6-4-2. 微觀結構 ................................................................................................... 58
6-4-3. 微觀集合組織 ........................................................................................... 59
6-4-3-1. 反極圖 地................................ ................................ ............................... 59
6-4-3-2. 再結晶粒的空間分佈 ................................ ................................ ........... 59
6-4-3-3. 退火集合組織演化 ................................ ................................ ................... 60
6-4-3-4. 晶粒方位分佈函數圖 ................................ ................................ ............... 61
6-4-3-5. 再結晶粒與集合組織統計 ................................ ........................... 61
6-4-3-6. 晶粒方位差 ................................ ................................ ............................... 62
6-4-4. 磁性質 ....................................................................................................... 62
6-4-4-1. 磁感應強度 (B50) 與鐵損值 與鐵損值 (W15/50) ................................ .................. 62
6-4-4-2. 鐵損值與再結晶粒尺寸相對關係 ................................ ....................... 63
6-4-4-3. 磁異向能 ................................ ................................ ................................ ... 63
6-5. 退火處理 — 晶粒成長階段 ................................................................... 63
6-5-1. 巨觀集合組織 ........................................................................................... 65
6-5-1-1. ODF 圖 ................................ ................................ ................................ ...... 65
6-5-1-2. 集合組織分佈 ................................ ................................ ........................... 65
6-5-2. 微觀結構 ................................................................................................... 65
6-5-3. 微觀集合組織 ........................................................................................... 65
6-5-3-1. 晶粒方位分 佈函數圖 ................................ ................................ ............... 65
x
6-5-3-2. 晶粒方位差 ................................ ................................ ............................... 66
6-5-4. 磁性質 ....................................................................................................... 66
6-5-4-1. 磁感應強度 (B50) 與鐵損值 與鐵損值 (W15/50) ................................ .................. 66
6-5-4-2. 鐵損值與晶粒尺寸相對關係 ................................ ................................ ... 66
6-5-4-3. 磁異向能 ................................ ................................ ................................ ... 66
第七章、 1.24 wt.%1.24 wt.%1.24 wt.%1.24 wt.%1.24 wt.%1.24 wt.%1.24 wt.% 矽與 2.54 wt.%2.54 wt.% 2.54 wt.%2.54 wt.%2.54 wt.%2.54 wt.% 矽之電磁鋼片討論 矽之電磁鋼片討論 ....................... 68
7-1. 矽含量差異 ............................................................................................... 68
7-2. 退火軟化曲線 ........................................................................................... 68
7-3. 再結晶比例 ............................................................................................... 68
7-4. 巨觀集合組織 ........................................................................................... 69
7-4-1. 熱軋 ........................................................................................................... 69
7-4-2. 冷軋 ........................................................................................................... 69
7-4-3. 再結晶階段 ............................................................................................... 70
7-4-4. 晶粒成長階段 ........................................................................................... 70
7-5. 微觀集合組織 ........................................................................................... 71
7-5-1. 再結晶晶粒空間分佈 ............................................................................... 71
7-5-2. 退火集合組織演化 ................................................................................... 71
7-5-3. 晶粒方位分佈函數圖 ............................................................................... 72
7-5-4. 再結晶晶粒與集合組織晶粒統計 ........................................................... 73
7-5-5. 晶粒方位差統計 ....................................................................................... 74
7-6. 磁性質 ....................................................................................................... 75
7-6-1. 磁感應強度 (B50) 與鐵損值 (W15/50) .................................................. 75
7-6-2. 磁異向能 ................................................................................................... 75
第八章、結論 ................................ ................................ .......................... 76
參考文獻 References
[1] 潘羿菁. (2013). 台灣人均用電量 亞洲第一. Available: http://www.chinatimes.com/newspapers/20130831000053-260202
[2] 中國鋼鐵公司. (2011, 電磁鋼捲. 1-11.
[3] Y. Sidor and F. Kovac, "Microstructural aspects of grain growth kinetics in non-oriented electrical steels," Materials Characterization, vol. 55, pp. 1-11, 2005.
[4] F. Grégori, K. Murakami, and B. Bacroix, "The influence of microstructural features of individual grains on texture formation by strain-induced boundary migration in non-oriented electrical steels," Journal of Materials Science, vol. 49, pp. 1764-1775, 2014.
[5] J. K. Kim, D. N. Lee, and Y. M. Koo, "The evolution of the Goss and Cube textures in electrical steel," Materials Letters, vol. 122, pp. 110-113, 2014.
[6] N. Zhang, P. Yang, and W. Mao, "Effect of rolling methods on microstructure, recrystallization texture and magnetic properties in a Fe–2.5%Si–0.52%Al non-oriented electrical steel," Materials Characterization, vol. 108, pp. 85-93, 2015.
[7] S.-Y. Wu, C.-H. Lin, W.-C. Hsu, L. Chang, P.-L. Sun, and P.-W. Kao, "Effect of Heating Rate on the Development of Annealing Texture in a 1.09 wt.% Si Non-oriented Electrical Steel," Transactions of the Iron and Steel Institute of Japan, 2016.
[8] J. Liu, Y. y. m. n. e. c. Sha, K. Hu, F. Zhang, and L. Zuo, "Formation of Cube and Goss Texture After Primary Recrystallization in Electrical Steels," Metallurgical & Materials Transactions. Part A, vol. 45, pp. 134-138, 2014.
[9] E. J. Gutiérrez-Castañeda and A. Salinas-Rodríguez, "Effect of annealing prior to cold rolling on magnetic and mechanical properties of low carbon non-oriented electrical steels," Journal of Magnetism and Magnetic Materials, vol. 323, pp. 2524-2530, 2011.
[10] Y. Hu, V. Randle, and T. Irons, "Macrotexture and microtexture evolution in cold rolled non-oriented electrical steel sheets during annealing," Materials Science and Technology, vol. 22, pp. 1333-1337, 2013.
[11] N. Li, L. Ma, L. Xiang, S. Qiu, and P. Zhao, "Evolution of Texture in a 2.8%Si Non-Oriented Electrical Steel Annealed at 1100°C," MATERIALS TRANSACTIONS, vol. 55, pp. 387-390, 2014.
[12] K. M. Lee, S. Y. Park, M. Y. Huh, J. S. Kim, and O. Engler, "Effect of texture and grain size on magnetic flux density and core loss in non-oriented electrical steel containing 3.15% Si," Journal of Magnetism and Magnetic Materials, vol. 354, pp. 324-332, 2014.
[13] S. Chen, J. Butler, and S. Melzer, "Effect of asymmetric hot rolling on texture, microstructure and magnetic properties in a non-grain oriented electrical steel," Journal of Magnetism and Magnetic Materials, vol. 368, pp. 342-352, 2014.
[14] H. G. Kang, K. M. Lee, M. Y. Huh, J. S. Kim, J. T. Park, and O. Engler, "Quantification of magnetic flux density in non-oriented electrical steel sheets by analysis of texture components," Journal of Magnetism and Magnetic Materials, vol. 323, pp. 2248-2253, 2011.
[15] M. A. d. Cunha and S. C. Paolinelli, "Effect of the Annealing Temperature on the Structure and Magnetic Properties of 2% Si Steel," Materials Research, vol. 5, pp. 373-378, 2002.
[16] L. Kestens and S. Jacobs, "Texture Control During the Manufacturing of Nonoriented Electrical Steels," Texture, Stress, and Microstructure, vol. 2008, 2008.
[17] J. J. Sidor, K. Verbeken, E. Gomes, J. Schneider, P. R. Calvillo, and L. A. I. Kestens, "Through process texture evolution and magnetic properties of high Si non-oriented electrical steels," Materials Characterization, vol. 71, pp. 49-57, 2012.
[18] J. Wang, J. Li, X.-f. Wang, J.-j. Tian, C.-h. Zhang, and S.-g. Zhang, "Effect of Heating Rate on Microstructure Evolution and Magnetic Properties of Cold Rolled Non-Oriented Electrical Steel," Journal of Iron and Steel Research, International, vol. 17, pp. 54-61, 2010.
[19] R. Abbaschian, L. Abbaschian, and R. E. Reed-Hill, Physical metallurgy principles, 4th ed. Australia: United Kingdom : Cengage Learning, 2010.
[20] W.-C. Hsu, L. Chang, P.-L. Sun, N. Ho, P.-W. Kao, and I. C. Hsiao, "Correlation between Recrystallization Texture and Heterogeneities in Deformed Structure of an Electrical Steel by Electron Back-scatter Diffraction," ISIJ International, vol. 55, pp. 2212-2216, 2015.
[21] E. Gomes, J. Schneider, K. Verbeken, J. Barros, and Y. Houbaert, "Correlation between microstructure, texture, and magnetic induction in nonoriented electrical steels," IEEE Transactions on Magnetics, vol. 46, pp. 310-313, 2010.
[22] H.-T. Liu, H.-L. Li, H. Wang, Y. Liu, F. Gao, L.-Z. An, et al., "Effects of initial microstructure and texture on microstructure, texture evolution and magnetic properties of non-oriented electrical steel," Journal of Magnetism and Magnetic Materials, vol. 406, pp. 149-158, 2016.
[23] H. Inagaki, "Fundamental Aspect of Texture Formation in Low Carbon Steel," ISIJ International, vol. 34, pp. 313-321, 1994.
[24] W. D. Callister and D. G. Rethwisch, Materials Science and Engineering, 8th ed.: Hoboken, N.J. : John Wiley & Sons, 2011.
[25] W. C. Hsu, P. L. Sun, P. W. Kao, and L. Chang, "Correlation between the deformation microstructure after rolling and the recrystallization nucleation of a non-oriented electrical steel," IOP Conference Series: Materials Science and Engineering, vol. 89, p. 012027, 2015.
[26] J.-T. Park and J. A. Szpunar, "Evolution of recrystallization texture in nonoriented electrical steels," Acta Materialia, vol. 51, pp. 3037-3051, 2003.
[27] R. K. Ray, J. J. Jonas, and R. E. Hook, "Cold rolling and annealing textures in low carbon and extra low carbon steels," International Materials Reviews, vol. 39, pp. 129-172, 1994.
[28] M. F. d. Campos, F. J. G. Landgraf, I. G. S. Falleiros, G. C. Fronzaglia, and H. Kahn, "Texture Evolution during the Processing of Electrical Steels with 0.5% Si and 1.25% Si," ISIJ International, vol. 44, pp. 1733-1737, 2004.
[29] N. Moelans, B. Blanpain, and P. Wollants, "Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3-D phase field simulations," Acta Materialia, vol. 55, pp. 2173-2182, 2007.
[30] D. I. Kim, J. S. Kim, J. H. Kim, and S. H. Choi, "A study on the annealing behavior of Cu-added bake-hardenable steel using an in situ EBSD technique," Acta Materialia, vol. 68, pp. 9-18, 2014.
[31] 徐瑋志, "極低碳鋼變形組織非均勻性與再結晶集合組織演化之研究," 博士論文, 材料與光電科學學系, 國立中山大學, 2016.
[32] D. Jiles, Magnetism and Magnetic Materials, 2 ed.: Boca Raton, FL : CRC Press/Taylor & Francis Group, 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code