Responsive image
博碩士論文 etd-0612102-124454 詳細資訊
Title page for etd-0612102-124454
論文名稱
Title
非分佈式拉曼光纖放大器之設計與實驗
Design and Experiment of discrete Fiber Raman Amplifier
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
48
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-03
繳交日期
Date of Submission
2002-06-12
關鍵字
Keywords
拉曼光纖放大器
Raman Amplifier
統計
Statistics
本論文已被瀏覽 5664 次,被下載 5000
The thesis/dissertation has been browsed 5664 times, has been downloaded 5000 times.
中文摘要
本論文針對非分佈式拉曼光纖放大器的設計和特性進行研究,並探討多個幫激波長架構的光放大器特性。近來由於半導體雷射的功率日漸提高,使得非分佈式拉曼光纖放大器能實際運用於光纖通信系統中,而拉曼光纖放大器具有低雜訊和任意增益頻帶配置兩項優點,在未來光纖通信系統中將擔任重要的角色。實驗和模擬架構上我們均採用後向幫激的方式,在實驗和模擬的相互印證下,得知模擬對於四個幫激波長架構有最佳的吻合度,我們得以設計出四個幫激波長架構的長波段增益平坦化非分佈式摻鉺光纖放大器。實驗結果顯示我們所設計的長波段非分佈式摻鉺光纖放大器,在1565 nm ~ 1595 nm波段中,對七個功率為-16dBm的輸入信號有良好的增益平坦度 (≦1 dB) ,而信號增益均在10 dB以上。
Abstract
In this thesis, we investigate the design and amplification characteristics of discrete fiber Raman amplifier (FRA), and discuss with amplification characteristics of FRA by employing multi-pumping-wavelength configuration. Recently, because of the invention of high output power of pump laser diodes, so discrete FRA can be practically employed in optical fiber communication system. The fiber Raman amplifier has two merits. One is the low noise characteristic and the other is the arbitrary spectral gain band, so it will play an important role in optical communication system. In this study, we employ backward pumping configurations in the experiment and simulation of discrete FRA. By comparing with results of experiment and simulation, we prove that the simulation results quite agree with the experimental data of four pumping wavelengths configuration, we have successfully designed an L-band gain flattened discrete FRA by using four pumping wavelengths configuration. The experimental results showed that the amplifier, for the input of seven optical channel each with –16 dBm input power level, has an optical gain of >10 dB of each channel with good gain uniformity (<1 dB) in the 1565-1595 nm wavelength region.



目次 Table of Contents
內容目錄
誌謝 I
中文摘要 II
英文摘要 III
內容目錄 IV
表目錄 V
圖目錄 VI

第一章、簡介 1

1.1 研究背景 1
1.2 研究動機 2
1.3 論文結構 3
第二章、拉曼光纖放大器之工作原理與特性 4

2.1 拉曼光纖放大器(FRA)的基本原理 4
2.1.1 激發性拉曼散射(SRS)……………………………………..4
2.1.2 拉曼增益係數(gR)……………………………………….…4
2.1.3 拉曼增益(Gain)………………………………………….…5
2.1.4 拉曼增益飽和(Raman gain saturation)………………….…7
2.1.5 雜訊指數(noise figure)……………………………………..8
2.1.6 雙重雷利散射(double Rayleigh scattering, DRS)…………8
2.2 非分佈式拉曼光纖放大器(discrete FRA)之討論……………….10
2.2.1 基本光路架構……………………………………………..10
2.2.2 幫激光源…………………………………………………..10
2.2.3 討論………………………………………………………..11
第三章、非分佈式拉曼光纖放大器之模擬與實驗 12

3.1 實驗與模擬結果比較 12
3.1.1 實驗與模擬架構…………………………………………..12
3.1.2 實驗和模擬之比較與討論………………………………..14
3.2 長波段增益平坦化非分佈式拉曼光纖放大器(L-band gain flattened discrete FRA)之研製……………………………….….16
3.2.1 增益平坦化非分佈式拉曼光纖放大器之特性……..…....16
3.2.2 增益平坦化非分佈式拉曼光纖放大器之設計與實驗….17
3.3 非分佈式拉曼光纖放大器之特性實驗………………………….20
3.3.1 高功率幫激光源架構實驗………………………………..20
3.3.2 多波長系統拉曼光纖放大器特性量測實驗……………..22
3.3 討論……………………………………………………………….23
第四章、結論…………………………………………………………….24

參考文獻…………………………………………………………………...26 ……………………………………………………………………..27








表目錄
頁次
表一. 使用Lucent DCF模擬和實驗架構之幫激功率大小………………… 18
表二. 使用Sumitomo DCF模擬和實驗架構之幫激功率大小……………… 18
表三. 模擬和實驗輸出功率相差值(△P )/探測信號(Pin): 0 dBm…………… 21
表四. 模擬和實驗輸出功率相差值(△P)/探測信號(Pin) : -16 dBm.………... 21








圖目錄
頁次
圖1.1 非分佈式 (discrete) 和分佈式 (distributed) 拉曼光纖放大器 (FRA) 架構圖………….……………………………………………………….. 28
圖2.1 激發性拉曼散射示意圖………….………………………….………..... 28
圖2.2 拉曼增益係數頻譜圖…………………………………………………... 29
圖2.3 不同輸入光信號功率之拉曼增益與幫激光功率的關係圖…………... 29
圖2.4 拉曼增益與輸入光信號功率之關係圖……………...………………… 30
圖2.5 雙重雷力散射(DRS)與不良接續面及連接器作用造成雜訊功率增加示意圖…………………………………………………………………... 30
圖2.6 有無雙重雷力散射(DBS)對光雜訊比的影響……………………..…... 31
圖2.7 非分佈式拉曼光纖放大器基本光路架構……………………………... 31
圖2.8 幫激光源極化方向對前向與後向幫激架構增益影響………………………………………………………………………... 32
圖2.9 幫激光源極化方向控制示意圖…………………………….………….. 32
圖2.10 光纖雷射架構圖(IPG-Photonics)………………...…………………….. 33
圖2.11 功率合波器結合四個幫激波長的架構示意圖(Wavesplitter)………… 33
圖3.1 實驗及模擬架構圖………………….……………….……..……….. 34
圖3.2 增益光纖(DCF)損失頻譜圖.…………………………………….…….. 35
圖3.3 幫激光源頻譜分佈圖……………………………………….………….. 35
圖3.4 二個幫激波長架構實驗與模擬比較圖……...………………………… 36
圖3.5 四個幫激波長架構實驗與模擬比較圖……….……..……………… 37
圖3.6 多幫激波長疊加增益平坦頻寬(未考慮幫激波長間的相互作用)……………………………………………………………………..… 38
圖3.7 12個幫激波長頻譜配置圖(Namiki 研究群)…….……………………. 38
圖3.8 多幫激波長疊加增益平坦頻寬(考慮幫激波長間的相互作用)…….. 38
圖3.9 實驗結果與重疊定理之頻譜比較圖…………………………………... 39
頁次
圖3.10 增益平坦化非分佈式拉曼光纖放大器實驗與模擬架構圖……………………………………………………………...………… 40
圖3.11(a) 輸入信號功率頻譜圖(Pin: -16 dBm)……………...………………… 41
圖3.11(b) 輸出信號功率頻譜圖(Lucent DCF)………………………………….… 41
圖3.11(c) 輸出信號功率頻譜圖(Sumitomo DCF)………………………………... 41
圖3.12 高功率幫激光源模擬輸出功率頻譜圖………………………………... 42
圖3.13 高功率幫激光源實驗輸出功率與增益頻譜圖(Pin=0dBm)…………... 43
圖3.14 高功率幫激光源實驗輸出功率與增益頻譜圖(Pin=-16dBm)………… 44
圖3.15 高功率幫激光源實驗與模擬輸出功率比較頻譜圖…………………... 45
圖3.16 高功率幫激光源實驗與模擬輸出功率比較頻譜圖………………...… 46
圖3.17 不同幫激波長架構相同幫激功率之增益頻譜比較圖……………….. 47
圖3.18 飽和信號(saturation tone)量測方法之實驗架構圖……………………. 48
圖3.19 飽和信號與單一信號量測之增益頻譜比較圖………………………... 48

參考文獻 References
[1] G. P. Agrawal, Fiber-Optical Communication System, John Wiley & Sons, Inc., New York, 1997.
[2] P. C. Becker, N. A. Olsson and J. R. Simpson, Erbium-Doped Fiber Amplifiers- Fundamentals and Technology, Academic Press, San Diego and London, 1999.
[3] P. B. Hansen, L. Eskilden, S. G. Grubb, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Capacity upgrades of transmission systems by Raman amplification,” IEEE Photon. Technol. Lett. vol. 9, no. 2, pp. 262-264, 1997.
[4] M. Nissov, C. R. Davidson, K. Rottwit, R. Menges, P. C. Corbett, D. Innis, and N. S. Bergano, “100 Gb/s (10×10 Gb/s) WDM transmission over 7200 km using distributed Raman amplification,” in Proc. Eur. Conf. Optical Fiber Communication, vol. 5 , pp. 9-12, 1997.
[5] S. Namiki and Y. Emori, “100 nm bandwidth flat gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM high power laser diodes,” in Proc. Optical Fiber Communication Conf., Paper PD 19, 1999.
[6] R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett.22, pp.276 , 1973.
[7] R. H. Stolen and E. P. Ippen, and A. R. Tynes, “Raman oscillation in glass optical waveguides,” Appl. Phys. Lett.20, 1972.
[8] G.. P. Agrawal, Fiber-Optical Communication System, John Wiley & Sons, Inc., New York, Chap. 8, pp. 381-382, 1997.
[9] S. A. E. Lewis, S. V. Chernikov and J. R. Taylor, “Gain saturation in silica-fibre Raman amplifier,” Electron. Lett., vol. 35, pp. 923-924, 1999.
[10] Y. Aoki “Properties of fiber Raman amplifiers and their applicability to Digital Optical communication systems,” IEEE, Journal of Lightwave Thchnol., vol. 6, pp.1225-1239, 1998.
[11] S. A. E. Lewis, S. V. Chernikov and J. R. Taylor, “Gain and saturation characteristics of dual-wavelength-pumped silica-fibre Raman amplifier,” Electron. Lett. vol. 35, pp.1178-1179, 1999.
[12] R. S. Tucker, D. M. Baney, “Optical Noise Figure: Theory and Measurements,” Conf. Optical Communication, vol. 3, pp. WI 1-1-1-3, 2000.
[13] P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkin, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman preamplifier,” IEEE Photon. Technol. Lett., vol.10, pp. 159-161, 1998.
[14] S. R. Chinn, “Temporal observation and diagnostic use of double rayleigh scattering in distributed Raman amplifiers,” IEEE Photon. Technol. Lett., vol. 11, pp. 1632-1634, 1999.
[15] Y. Akasaka, “Characteristics of optical fibers for discrete Raman amplifiers,” in proc. Eur. Conf. Optical Fiber Communication, Poster p18, 1999.
[16] H. Masuda, “Review of wideband hybrid amplifiers,” Optical Fiber Communication, vol. 1, pp. 2-4, 2000.
[17] A. Berntson, S. Popov, E.Vanin, G. Jacobsen and J. Karlsson, “Polarisation dependence and gain tilt of Raman amplifiers for WDM systems,” Optical Fiber Communication, vol. 1, pp. MI1/1 -MI1/3, 2001.
[18] Y. Emori, S. Matsushita, and S. Namiki, “Cost-effective depolarized diode pump unit designed for C-band flat-gain Raman amplifiers to control EDFA gain profile,” in Proc. Optical Fiber Communication Conf., vol. 4, pp. 106-108, 2000.
[19] A. J. Stentz, “Raman amplifier with improved system performance“, in proc. Eur. Conf. Optical Fiber Communication , paper PD16, pp. 16-17, 1996.
[20] T. N. Nielsen, “Raman amplifiers in WDM systems”, IEEE Lasers and Electro-Optics Society, vol. 2, pp. 471-472, 1999.
[21] S. G. Grubb, “High-power 1.48μm cascaded Raman laser in germanosilicate fibers”, IEEE Photon. Technol. Lett., vol. 9, pp. 197-199, 1995
[22] D. M. Baney, and J. Stimple, “WDM EDFA gain characterization with a reduced set of saturating channels”, IEEE Photon. Technol. Lett., vol. 8, pp. 1615-1617, 1996.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code