Responsive image
博碩士論文 etd-0612106-181922 詳細資訊
Title page for etd-0612106-181922
論文名稱
Title
表面聲波元件的封裝效應與ESD防護和RFID被動標籤IC最佳化設計的研究
Investigation of Package Effects and ESD Protections on the SAW Devices and Optimum Design of RFID Passive Transponder
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-03
繳交日期
Date of Submission
2006-06-12
關鍵字
Keywords
表面聲波元件、封裝、靜電防制、有限時域差分法、射頻辨識系統
Electrostatic Discharge (ESD), Package, Surface Acoustic Wave Device, Finite Difference Time Domain (FDTD), Radio Frequency Identification (RFID)
統計
Statistics
本論文已被瀏覽 5723 次,被下載 2799
The thesis/dissertation has been browsed 5723 times, has been downloaded 2799 times.
中文摘要
首先,此論文的目的,是為了分析表面聲波元件(SAW)的整體串音干擾,其中包含了封裝與表面聲波元件上的佈線。我們提出了一種新的分析方法,使用時域有限差分法並結合等效電流源法,我們分別分析了兩種不同的佈線,在同樣的指狀電極(IDT)與封裝盒下的影響,從實驗的驗證結果中,可以發現我們的方法可以得到相當好的吻合度,所以此法可以有效地用來分析表面聲波元件上的電磁干擾問題。

其次,我們使用等效電流源法去模擬人體的靜電放電現象,並討論表面聲波元件上犧牲電極的效率,接著,我們提出使用碎形結構,所組成的新型犧牲電極,來防護靜電破壞,比較傳統的電極,碎形結構可以更有效地提升防護的效率。

最後,因為射頻辨識系統(RFID)是使用調整晶片上的輸入阻抗,來產生背向反射編碼,所以我們提出了一種在接收機上,維持一定的位元錯誤率,並使被動標籤晶片的接收能量最大化的新分析與最佳化方法,此方法是使用在接收機上反射波的訊號星座圖,映射到被動標籤晶片上所需的史密斯圖,藉由此法,可以由系統的規格與接收傳送的天線特性中,簡單的訂出最佳化二位元系統的晶片輸入阻抗。
Abstract
First, one of the purposes of this thesis is to estimate the complete crosstalk effects including the package and the pads on the surface acoustic wave (SAW) substrate. A new approach based on finite-difference time-domain (FDTD) with equivalent current source method is applied. Two kinds of patterns of one-port SAW resonators with the same package structure and inter-digital transducer (IDT) design are studied. Verification with the measurement results shows that our method is able to obtain good agreement and be used to observe the influence from the SAW pattern.

Second, the equivalent current source method is extended to model the excitation of human-body’s electrostatic discharge (ESD) situations. The efficiencies of sacrificial electrodes are also discussed. Finally, a novel sacrificial electrode with fractal to protect SAW devices from ESD break is proposed. Comparing with traditional electrode, the simulation results show that fractal can improve the protective efficiency greatly.

Finally, a novel analysis model that can be used to analyze and optimize the impedance of an RFID transponder integrated circuit (IC) which uses backscatter encoding based on simultaneously maintaining the BER of the reader and maximizing the received power of the transponder IC is proposed. The analysis method utilizes mapping from signal constellation of the backscattered signal to the Smith chart to relate the two parameters. Given the system specification and characteristics of the reader and transponder antennas, the optimum impedances of transponder IC for binary communication system can be easily designed by using this model.
目次 Table of Contents
Chapter 1 INTRODUCTION 1
1.1 Background 1
1.1.1 Crosstalk Effects on the Packaged SAW Filter 1
1.1.2 Electrostatic Discharge Effects on the SAW Pattern 2
1.2 Literature Survey and Contribution 3
1.2.1 Analysis of Crosstalk Effects on the Packaged SAW Filter 3
1.2.2 Sacrificial Electrode with Fractal Concept for ESD Protection 5
1.3 Outline of the thesis 7

Chapter 2 SIMULATION METHOD 8
2.1 FDTD Formulation 8
2.2 Source Consideration 10
2.3 Modeling of One-Port SAW Resonator 12
2.4 Source Consideration of ESD 16

Chapter 3 SIMULATION RESULTS AND VERIFICATION OF PACKAGED SAW 17
3.1 Standard Pattern of the One-Port SAW Resonator 20
3.2 Complex Pattern of the One-Port SAW Resonator 23

Chapter 4 ANALYSIS AND DESIGN OF SACRIFICIAL ELECTRODES FOR ESD PROTECTION 27
4.1 Study of Sacrificial Electrodes on the SAW Pattern 27
4.2 Design of Sacrificial Electrodes with Fractal Structure 32

Chapter 5 CONCLUSION 34

Appendix A 36
Appendix B 39
Appendix C 40
Appendix D OPTIMUM DESIGN OF RFID PASSIVE TRANSPONDER USING SMITH CHART AND SIGNAL CONSTELLATION 42
D.1 Introduction 42
D.2 Analysis Method for Two-Way RFID Link 45
D.3 Optimum Design 49
D.4 Case Study 50
D.5 Conclusion 53

Bibliography 54
VITA 59
參考文獻 References
[1] G. Fischerauer, D. Gogl, R. Weigel, and P. Russer, “Investigation of parasitic effects in multi-transducer SAW RF filters,” IEEE Ultrason. Symp. Proc., vol. 1, pp. 241–244, Nov. 1994.
[2] T. Makkonen, V. P. Plessky, S. Kondratiev, and M. M. Salomaa, “Electromagnetic modeling of package parasitics in SAW-duplexer,” IEEE Ultrason. Symp. Proc., vol. 1, pp. 29–32, Nov. 1996.
[3] S. Mineyoshi, O. Kawachi, M. Ueda, Y. Fujiwara, H. Furusato, and O. Ikata, “Analysis and optimal SAW ladder filter design including bonding wire and package impedance,” IEEE Ultrason. Symp. Proc., vol. 1, pp. 175–178, Oct. 1997.
[4] T. Makkonen, S. Kondratiev, V. P. Plessky, T. Thorvaldsson, J. Koskela, J. V. Knuuttila, and M. M. Salomaa, “Surface acoustic wave impedance element ISM duplexer: modeling and optical analysis,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.48, pp. 652–665, May 2001.
[5] Y. Xiaomin, C. Finch, and T. Wu, “Investigation of electronic packaging on the performance of SAW devices,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, vol. 2, pp. 1236–1241, Aug. 2001.
[6] C. Finch, X. Yang, T. Wu, and B. Abbott, “Full-wave analysis of RF SAW filter packaging,” IEEE Ultrason. Symp. Proc., vol.1, pp. 81–84, 2001.
[7] K. Cheema, H. Dong, and B. P. Abbott, “Design and simulation of flip-chip RF SAW filter packages,” presented at IEEE Ultrason. Symp. Proc., Munich, Germany, 2002.
[8] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302–307, May 1966.
[9] D. M. Sheen, S. M. Ali, M. D. Abouzahra, and J. A. Kong, “Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 849–857, July 1990.
[10] A. Taflove, Advances in computational electrodynamics. Boston, London: Artech House, 1998.
[11] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. Boston, London: Artech House, 2000.
[12] M. Piket-May, A. Taflove, and J. Baron, “FDTD modeling of digital signal propagation in 3-D circuits with passive and active loads,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1514–1523, 1994.
[13] V. A. Thomas, M. E. Jones, M. Piket-May, A. Taflove, and E. Harrigan, “The use of SPICE lumped circuits as sub-grid models for FDTD analysis,” IEEE Microwave Guided Wave Lett., vol. 4, pp. 141–143, 1994.
[14] C.-N. Kuo, R.-B. Wu, B. Houshmand, and T. Itoh, “Modeling of microwave active devices using the FDTD analysis based on the voltage-source approach,” IEEE Microwave Guided Wave Lett., vol. 6, pp. 199–201, May 1996.
[15] M. Chen, S. T. Chew, C.-N. Kuo, and T. Itoh, “The extended FDTD method incorporating equivalent-source technique for full-wave analysis of linear and nonlinear microwave circuits,” in IEEE MTT-S Int. Microwave Symp. Dig., pp.67–70, June 1997.
[16] C.-N. Kuo, B. Houshmand, and T. Itoh, “Full-wave analysis of packaged microwave circuits with active and nonlinear devices: an FDTD approach,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 819–826, May 1997.
[17] G. Kobidze, “Incorporating SPICE into an FDTD code,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, pp. 377–380, May 1999.
[18] K.-Y. Lin, K.-H. Lin, and B. Chau, “FDTD analysis of crosstalk between SAW filter and package,” IEEE Ultrason. Symp. Proc., vol.1, pp. 289–292, 2002.
[19] K.-Y. Lin and K.-H. Lin, “A study of crosstalk effects on the packaged SAW by the FDTD method,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 52, pp. 445–454, Mar. 2005
[20] K.-Y. Lin and K.-H. Lin, “A study of electrostatic discharge effects of the SAW pattern by the FDTD method,” IEEE Ultrason. Symp. Proc., vol. 2, pp. 1343–1346, 2004.
[21] K.-Y. Lin and K.-H. Lin, “Study of sacrificial electrode with fractal concept on SAW pattern for ESD protection using FDTD,” IEEE Microwave Wireless Compon. Lett., vol. 16, pp. 311–313, May 2006
[22] H. Feng, R. Zhan, Q. Wu, G. Chen, and A. Z. Wang, “RC-SCR: very-low-voltage ESD protection circuit in plain CMOS,” Electron. Lett., vol. 38, pp. 1099–1100, Sep. 2002.
[23] S. Joshi and E. Rosenbaum, “ESD protection for broadband ICs (DC-20GHz and beyond),” Electron. Lett., vol. 39, pp. 906–908, Jun. 2003.
[24] S. Hyvonen, S. Joshi, and E. Rosenbaum, “Cancellation technique to provide ESD protection for multi-GHz RF inputs,” Electron. Lett., vol. 39, pp. 284–286, Feb. 2003.
[25] J. P. Gianvittorio and Y. Rahmat-Samii, “Fractal antennas: a novel antenna miniaturization technique, and applications,” IEEE Antenn. Propagat. Mag., vol. 44, pp. 20–36, Feb. 2002.
[26] H. Ghali and T. A. Moselhy, “Miniaturized fractal rat-race, branch-line, and coupled-line hybrids,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 2513–2520, Nov. 2004.
[27] I. K. Kim, N. Kingsley, M. Morton, R. Bairavasubramanian, J. Papapolymerou, M. M. Tentzeris, and J.-G. Yook, “Fractal-shaped microstrip coupled-line bandpass filters for suppression of second harmonic,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 2943–2948, Sep. 2005.
[28] H. Samavati, A. Hajimiri, A. R. Shahani, G. N. Nasserbakht, and T. H. Lee, “Fractal Capacitors,” IEEE J. Solid-State Circuits, vol. 33, pp. 2035–2041, Dec. 1998.
[29] C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications. London, Boston, New York: Academic Press, 1998.
[30] E. J. Staples, J. S. Schoenwald, R. C. Rosenfeld, and C. S. Hartmann, “UHF surface acoustic wave resonators,” IEEE Ultrason. Symp. Proc., pp. 245–252, 1974.
[31] E. A. Ash, “Fundamentals of signal processing devices,” Acoustic Surface Waves, A. A. Oliner, Ed. New York: Springer-Verlag, pp. 113, 1978.
[32] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computat. Phys., vol. 114, pp. 185–200, 1994.
[33] Y.-S. Huang and T.-L. Wu, “Numerical and experimental investigation of noise coupling perturbed by ESD currents on Printed circuit boards,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, vol. 1, pp. 43–47, Aug. 2003.
[34] U. Karthaus and M. Fischer, “Fully integrated passive UHF RFID transponder IC with 16.7uW minimum RF input power,” IEEE J. Solid-State Circuits, vol. 38, pp. 1602–1608, Oct. 2003.
[35] G. D. Vita and G. Iannaccone, “Design criteria for the RF section of UHF and microwave passive RFID transponders,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 2978–2990, Sep. 2005.
[36] P. V. Nikitin, K. V. S. Rao, S. F. Lam, V. Pillai, R. Martinez, and H. Heinrich, “Power reflection coefficient analysis for complex impedances in RFID tag design,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 2721–2725, Sep. 2005.
[37] S. Haykin, Communication System. 4nd ed. New York: John Wiley & Sons. Inc, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code