Responsive image
博碩士論文 etd-0612109-175313 詳細資訊
Title page for etd-0612109-175313
論文名稱
Title
應用粒子群演算法於雙目標動態電力調度問題之研究
Study of Two-Objective Dynamic Power Dispatch Problem by Particle Swarm Optimization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-11
繳交日期
Date of Submission
2009-06-12
關鍵字
Keywords
動態經濟調度、雙目標、最佳化電力潮流、粒子群最佳化演算法、可傳輸容量
Two-Objective, Dynamic Economic Dispatch, Optimal Power Flow, Available Transfer Capability, Particle Swarm Optimization
統計
Statistics
本論文已被瀏覽 5686 次,被下載 0
The thesis/dissertation has been browsed 5686 times, has been downloaded 0 times.
中文摘要
近年來環保意識高漲,使得電力調度模式不再是單純以經濟為導向,故本文提出應用粒子群最佳化演算法以及互動妥協規劃法於求解二十四小時之雙目標電力調度問題。同時考量如何在最低發電成本及最低污染排放量,兩互相衝突的目標中選擇一最理想的運轉調度模式。本文提出於動態經濟調度中加入考量混合整數規劃問題之最佳化電力潮流,將使此調度解更加符合實際系統之操作;而本文所考量之混合整數規劃問題之最佳化電力潮流,包括了連續以及離散兩種不同型態之變數;其連續變數為發電機的實功率輸出以及發電匯流排上之電壓,離散變數為並聯電容器組大小以及變壓器分接頭位置調整。模擬實測皆在標準IEEE 30 Bus系統上進行測試。為了改善粒子群最佳化演算法容易陷入局部最佳解的問題,本文提出使用具有時變性質加速係數的粒子群最佳化演算法,並搭配改良過之局部隨機搜尋法,使其能快速且精確得到整體最佳解,更不失粒子群最佳化演算法求解速度快之優點。另本文亦於既有之調度模式上,考慮線上可再傳輸容量,並應用敏感性因子法計算該時段每個發電端可供給負載端之可傳輸容量,將其視為一新的限制條件並納入至動態經濟調度問題,將可使負載端欲提高負載量時,能夠同時兼顧最低發電成本以及系統安全限制範圍,以期得到最佳之調度結果。
Abstract
In recent years, the awareness of environmental protection has made the power dispatch model no longer purely economical-oriented. This thesis proposed the application of particle swarm optimization (PSO) algorithm and interactive compromise programming method to solve the 24-hour two-objective power dispatch problem. Considering simultaneously the lowest generating cost and the lowest pollution emission, the two mutually-conflicting objectives will choose a compromised dispatch model. This thesis joined the mixed-integer programming problem of optimal power flow (MIOPF) with the dynamic economic dispatch (DED), making this dispatch solution more realistic without electrical violations; The MIOPF considers both continuous and discrete types of variables. The continuous variables are the generating unit real power output and the generator-bus voltage magnitudes; the discrete variables are the shunt capacitor banks and transformer tap setting. Simulation were run on the standard IEEE 30 Bus system. In order to avoid the PSO local optimality problem, this thesis proposed the utilization of the PSO algorithm with time-varying acceleration coefficients (PSO_TVAC) plus the local random search method (LRS), so it can quickly and effectively reach the optimal solution, without advantages of performance and accuracy of PSO. This thesis also proposed the consideration of the available transfer capability (ATC) on transmission lines of the existing dispatch model. Applying sensitivity factors to calculate each generator’s available transfer capability that can be offered in the analyzed time interval, enables the creation of a new constraint. Joined with the dynamic economic dispatch problem, it will make possible that a load client wishes to raise its demand. Simultaneously taking care of the minimum cost and the limits of system security, better dispatch results could be expected.
目次 Table of Contents
中文摘要..............................................................................................................I
Abstract..............................................................................................................II
目錄...................................................................................................................IV
圖目錄..............................................................................................................VII
表目錄...............................................................................................................IX

第一章 緒論
1-1 研究背景與動機........................................................................................1
1-2 研究方法與目的........................................................................................2
1-3 論文架構....................................................................................................3

第二章 負載潮流方法與最佳化電力潮流介紹
2-1 前言............................................................................................................5
2-2 電流注入法負載潮流模型........................................................................6
2-2.1 具常數亞可比矩陣之負載潮流模型推導......................................6
2-2.2 電壓控制匯流排模型推導............................................................10
2-3 最佳化電力潮流介紹................................................................................14
2-3.1 最佳化電力潮流之問題描述...........................................................14
2-3.2 混合整數規劃問題之最佳化電力潮流...........................................16

第三章 可傳輸容量於動態經濟調度問題描述與數學模式
3-1 前言..........................................................................................................17
3-2 可傳輸容量(ATC)之計算方法................................................................21
3-2.1 線路設備額定限制條件.................................................................21
3-2.2 求解可傳輸容量.............................................................................23
3-2.3 6 Bus系統範例模擬.......................................................................29
3-3 可傳輸容量於動態經濟調度問題設計與求解流程................................32
第四章 最佳化演算法與多目標規劃法
4-1 粒子群最佳化演算法(PSO).....................................................................35
4-1.1 前言.................................................................................................35
4-1.2 傳統粒子群最佳化演算法.............................................................35
4-1.3 具時變性質加速係數粒子群最佳化演算法(PSO_TVAC)...........40
4-1.4 局部隨機搜尋法(LRS)....................................................................41
4-1.5 範例測試與效果比較.......................................................................43
4-2 多目標規劃法. ...........................................................................................46
4-2.1 前言...................................................................................................46
4-2.2 權值整合法.......................................................................................47
4-2.3 最短距離法.......................................................................................48
4-2.4 互動妥協規劃法...............................................................................49

第五章 雙目標動態經濟調度問題描述與數學模式
5-1 前言............................................................................................................52
5-2 限制條件....................................................................................................53
5-2.1 等式限制式.......................................................................................53
5-2.2 非等式限制式...................................................................................54
5-3 目標函數....................................................................................................56
5-3.1 最低發電成本調度策略...................................................................56
5-3.2 最低污染排放調度策略...................................................................57
5-3.3 雙目標電力調度策略.......................................................................57
5-4 應用PSO_TVAC+LRS與互動妥協規劃法於研究問題之求解流程.......59

第六章 系統測試及結果分析
6-1 前言…........................................................................................................65
6-2 考慮混合整數問題之OPF於單目標最佳運轉調度測試........................68
6-2.1 單一時段單一目標最佳調度測試…............................................68
6-2.2 二十四小時最低發電成本調度測試…...........................................75
6-2.3 二十四小時最低污染排放調度測試…...........................................80
6-3 應用互動妥協規劃法於雙目標電力調度策略測試................................84
6-4 可傳輸容量限制於經濟調度問題模擬測試…........................................87
6-4.1 範例一:於時段9,不同負載端要求增加負載量測試.....................87
6-4.2 範例二:於時段22,不同負載端要求增加負載量測試...................91

第七章 結論及未來發展方向
7-1 結論............................................................................................................97
7-2 未來發展方向............................................................................................98

參考文獻............................................................................................................99
參考文獻 References
[1] C. B. Somuah, and N. Khunaizi, “Application of linear programming redispatch technique to dynamic generation allocation,” IEEE Transactions on Power Systems, Vol. 5, No. 1, pp. 20-26, 1990.
[2] F. Li, R. Morgan, and D. Williams, “Towards more cost saving under stricter ramping rate constraints of dynamic economic dispatch problems - a genetic based approach,” Proceedings of the IEE Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, Glasgow, pp. 221-225, 1997.
[3] R. H. Liang, “A neural-based redispatch approach to dynamic generation allocation,” IEEE Transactions on Power Systems, Vol. 14, No. 4, pp. 1388-1393, 1999.
[4] P. Attaviriyanupap, H. Kita, E. Tanaka, and J. Hasegawa, “A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function,” IEEE Transactions on Power Systems, Vol. 17, No. 2, pp. 411-416, 2002.
[5] W. Ongsakul, and N. Ruangpayoongsak, “Constrained dynamic economic dispatch by simulated annealing/genetic algorithms,” Proceedings of the International Conference on 22nd IEEE Power Engineering Society, Sydney, pp. 207-212, 2001.
[6] R. C. Eberhart and J. Kennedy, “A New Optimizer Using Particle Swarm Theory,” proc. Sixth International Symposium on Micro Machine and Human Science, Nagoya, pp. 39-43, 1995.
[7] Q. L. Zhang, X. Li, and Q. A. Tran, “A Modified Particle Swarm Optimization Algorithm,” Control Conference, CCC .Chinese, Vol. 5, pp. 2993-2995, Aug. 2005.
[8] M. A. Abido, “Optimal Power Flow Using Particle Swarm Optimization,” Electric Power Energy System, Vol. 54, No. 24, pp. 563-571, 2002.
[9] Z.-L. Gaing, “Particle swarm optimization to solving the economic dispatch considering generator constraints,” IEEE Transaction Power System, Vol. 18, No. 3, pp. 1718-1727, Aug. 2003.
[10] J.-B. Park, K.-S. Lee, J.-R. Shin, and K. Y. Lee, “A particle swarm optimization for economic dispatch with nonsmooth cost functions,” IEEE Transaction Power System, Vol. 20, No. 1, pp. 34-42, Feb. 2005.
[11] D. N. Jeyakumar, T. Jayabarathi, and T. Raghunathan, “Particle swarm optimization for various types of economic dispatch problems,” Int. J. Electric Power Energy System, Vol. 28, No. 1, pp. 36-42, 2006.
[12] R. Luss and T. H. I. Jaakola, “Optimization by direct search and systematic reduction of the size of the search region,” AIChE J., Vol. 19, No. 4, pp. 760–766, 1973.
[13] 李立、盧展南,有關電力市場中TTC與ATC之研究完成報告,國科會計畫成果報告,NSC 88-TPC-E-110-001.
[14] 蔡誌謚, “隨機可傳輸容量計算,” 碩士論文, 國立中山大學電機研究所, 高雄, 民國89年6月.
[15] W. M. Lin and J. H. Teng, “Phase-Decoupled Load Flow Method for Radial and Weakly-Mesh Distribution Networks,” IEE Proc.-Generation, Transmission and Distribution, Vol.143, No. 1, pp.39-42, January 1996.
[16] W. M. Lin, Yuh-Sheng Su, Hong-Chan Chin, and J. H. Teng, ”Three-Phase Unbalanced Distribution Power Flow Solutions With Minimum Data Preparation,” IEEE Transactions on Power Systems, Vol. 143, pp. 1178-1183, Aug. 1999.
[17] W. M. Lin, Tung-Sheng Zhan, Ming-Tong Tsay, “Multiple-frequency three-phase load flow for harmonic analysis,” IEEE Transactions on Power Systems, Vol. 19, Issue 2, pp. 897-904, May 2004.
[18] 詹東昇, “多頻電力潮流模型與電力市場潮流追蹤之研究,” 博士論文, 國立中山大學電機研究所, 高雄, 民國94年6月.
[19] J. Carpentiers, “Contribution a. '1' etude du dispatching economique,” Bull. Soc. Francaise Electric, Vol.3, pp.431-447, 1962
[20] M. Huneault, and F. D. Galiana, “A Survey of The Optimal Power Flow Literature,” IEEE Transaction on Power Systems, Vol. 6, No. 2, pp.762-770, May 1991.
[21] G. Verbic, and C. A Canizares, “Probabilistic Optimal Power Flow in Electricity Markets Based on A Two-Point Estimate Method,” IEEE Transaction on Power Systems, Vol.21, No.4, pp.1883-1893, Nov. 2006.
[22] A. J. Wood, and B. F. Wollenberg, “Power Generation Operation and Control,” John Wiley & Sons, Inc., 1996.
[23] A. Zobian and M.D. Illic, “Unbundling of transmission and avcillary service,” IEEE Transactions on Power System, Vol.12, No.2, pp. 539-548, May 1997.
[24] Y. Tian and G. Gross, “OASISNET : an OASIS network simulator,” IEEE Transactions on Power System, Vol. 13, Issue 4, pp. 1251-1258, Nov. 1998
[25] North American Electric Reliability Council, “Available Transfer Capability Definitions and Determination,” Princeton, N. J., June 1996.
[26] G. C. Ejebe, J. Tong, J. G. Frame, X. Wang, and W. F. Tinney, “Available Transfer Capability Calculations,” IEEE Transactions on Power System, Vol. 13, No. 4, pp. 1521-1527, October 1997.
[27] Shi Y. and Eberhart R., “Empirical study of particle swarm optimization.”, Proc. IEEE Evol. Comput., Vol. 3, pp. 69-73, 1999.
[28] Fu-Sheng Cheng; Jia-Sheng Tu; Cheng-Hong Lv and Ming-Tong Tsay, “A Generalized Regression Neural Network for Solving Economic Dispatch Problem,” ICEE for the 21st Century With focus on Sustainability and Reliability, pp.113, July 2007.
[29] A. Ratnaweera, S.K. Halgamuge and H.C. Watson, “Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients,” IEEE Transactions on Evolutionary Computation, Vol. 8, Issue 3, pp. 240-255, June 2004.
[30] Chaturvedi, K. T.; Pandit, M. and Srivastava, L., “Self-Organizing Hierarchical Particle Swarm Optimization for Nonconvex Economic Dispatch,” IEEE Transactions on Power System, Vol. 23, Issue 3, pp. 1079-1087, Aug. 2008.
[31] Selvakumar, A.I. and Thanushkodi, K., “A New Particle Swarm Optimization Solution to Nonconvex Economic Dispatch Problems,” IEEE Transactions on Power Systems, Vol. 22, Issue 1, pp. 42-51, Feb. 2007.
[32] Nidul Sinha, R. Chakrabarta and P. K. Chattopadhyay, “Evolutionary Programming Techniques for Economic Load Dispatch,” IEEE Transactions on Evolutionary Computation, Vol. 7, pp. 83-94, 2003.
[33] Bhagwan Das D., Patvardhan C., “Solution of economic load dispatch using real coded hybrid stochastic search,” Electric Power Energy System, pp. 165-170, 1999.
[34] Khamsawang S, Boonseng C, Pothiya S., “Solving the economic dispatch problem with Tabu search algorithm,” IEEE Int. Conf. Ind Tech. Vol.1, pp. 274-278, 2002
[35] 許志義, “多目標決策” , 五南圖書出版公司,民國83年2月.
[36] Cheng-Chien Kuo, Hong-Chan Chang, ”Solving the Bi-objective Scheduling of Switched Capacitors Using an Interactive Best Comprise Approach,” Electric Power Systems Research, Vol.46, pp133-140, 1998.
[37] AlRashidi M.R., El-Hawary M.E., “Hybrid Particle Swarm Optimization Approach for Solving the Discrete OPF Problem Considering the Valve Loading Effects,” IEEE Transactions on Power Systems, Vol. 22, Issue 4, pp. 2030-2038, Nov. 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.12.205
論文開放下載的時間是 校外不公開

Your IP address is 3.144.12.205
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code