Responsive image
博碩士論文 etd-0612115-030002 詳細資訊
Title page for etd-0612115-030002
論文名稱
Title
鯽魚膽根部乙醇萃取物抑制鼻咽癌細胞株增生及誘導其細胞凋亡
Antiproliferation and Apoptosis Induction of Ethanolic Extracts of Pluchea indica Root on Human Nasopharyngeal Carcinoma Cell Lines
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-04
繳交日期
Date of Submission
2015-07-12
關鍵字
Keywords
促進凋亡蛋白、抗凋亡蛋白、凋亡、腫瘤抑制蛋白p53、鯽魚膽、鼻咽癌
Bcl-2, Bax, apoptosis, p53, nasopharyngeal carcinoma, Pluchea indica
統計
Statistics
本論文已被瀏覽 5762 次,被下載 73
The thesis/dissertation has been browsed 5762 times, has been downloaded 73 times.
中文摘要
鼻咽癌(Nasopharyngeal carcinoma, NPC)是一種頭頸部癌症,在全世界並不常發生,但是在台灣、中國的南方(如:福建、廣東一帶)、阿拉斯加、格陵蘭及東南亞等地卻有很高的發生率。鯽魚膽(Pluchea indica (L.) Less)是一種常見的中草藥,分布於熱帶國家的濱海或鹽澤地區,此植物傳統上具有抗發炎、解熱及收斂的效果。本研究的目的是為了證實鯽魚膽根部乙醇萃取物(ethanolic extract of Pluchea indica root)對於鼻咽癌細胞株生長的影響及其抗癌的相關分子機制。本研究中,細胞的存活率利用WST-1分析進行實驗,並利用群落生長分析(colony formation assay)研究鯽魚膽根部乙醇萃取物對鼻咽癌細胞增生的影響。鯽魚膽根部乙醇萃取物對鼻咽癌細胞移行(cell migration)的影響則分別利用體外傷口癒合分析(wound healing assay)及細胞穿膜試驗(transwell assay)進行分析。鯽魚膽根部乙醇萃取物對細胞週期的影響,利用流式細胞儀(flow cytometry)決定,而細胞凋亡所形成的DNA片段(DNA fragmentation)則採用末端去氧核苷酸轉移酶引導的dUTP 缺口分析(Tdt-mediated dUTP nick end labelling (TUNEL) assay)偵測。凋亡相關的基因表現,利用及時定量聚合酶連鎖反應(RT-PCR)及西方墨點法(western blotting)進行分析。研究結果顯示鯽魚膽根部乙醇萃取物能有效的抑制NPC-TW01及NPC-TW04兩株鼻咽癌細胞的存活率及增生,此抑制效果具有藥物劑量的依賴性,且NPC-TW04細胞對鯽魚膽根部乙醇萃取物具有更高的敏感性。實驗結果也證實鯽魚膽根部乙醇萃取物可抑制鼻咽癌細胞的移行,且隨著鯽魚膽根部乙醇萃取物的劑量增加,位於sub-G1期的鼻咽癌細胞比例也會隨之增加。在凋亡的分子機制方面,鯽魚膽根部乙醇萃取物增加p53 mRNA及蛋白質的表現,同時也增加BAX的表現及抑制Bcl-2表現,此外,鯽魚膽根部乙醇萃取物也增加鼻咽癌細胞中Bax/Bcl-2的比值,藉由以上這些相關的機制,進而抑制鼻咽癌細胞的增生。本研究的結果顯示在開發抗鼻咽癌新藥時,可以考慮由鯽魚膽的活性萃取物著手。
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer that rarely occurs in most parts of the world. In contrast, the highest incidence was found in the southern Chinese population of Guangdong, Inuits of Alaska, and native Greenlanders. Pluchea indica (L.) Less is a well-known indigenous medicinal plants that grows in littoral areas of tropical regions of countries such as Malaysia, Indonesia, Australia, Taiwan, India, and Mexico. The plants have been traditionally used as astringent and antipyretic. The present study is to investigate the anti-cancer effect of the ethanolic extract of Pluchea indica (L.) Less root (PIRE) and its possible molecular mechanism in human nasopharyngeal carcinoma (NPC) cells. Cell viability were measured by WST-1 experiments and Colony formation assay. Cell migration were measured by wound healing assay and transwell assay in vitro, respectively. The sub-G1 ratio was examined using flow cytometry and the extent of DNA fragmentation was evaluated by the Tdt-mediated dUTP nick end labelling (TUNEL) assay. The expression of apoptosis-related proteins were assessed by Western blotting. We found that PIRE could strongly inhibit cell viability of NPC-TW01 and NPC-TW04 cells in dose-dependent manner; however, NPC-TW04 cells showed more susceptible to the treatment. Furthermore, cell migrations were also suppressed with exposure to PIRE. This study also found that PIRE could significantly increase the occurrence of the sub-G1 phase and the extent of DNA fragmentation in a dose-dependent manner, which showed that, PIRE significantly increased apoptosis in NPC cells. The apoptotic process triggered by PIRE involved the up-regulation of pro-apoptotic Bax protein and the suppression of anti-apoptotic Bcl-2 protein expression. In the meantime, we also observed that PIRE could increase the ratios of Bax/Bcl-2 protein levels and up-regulation of the p53 protein in a concentration-dependent manner. Therefore, PIRE could induce the apoptosis signaling pathway in NPC cells by activation of p53 and by regulation of apoptosis-related proteins. In summary, this study suggest that Pluchea indica could be further investigated as a new alternative chemotherapeutic agent for NPC.
目次 Table of Contents
論文審定書 ⅰ
誌謝 ⅱ
中文摘要 ⅲ
英文摘要 ⅴ
壹、緒論 1
一、前言 1
二、鼻咽癌病因 2
三、鼻咽癌分子機轉 5
四、鼻咽癌病理學與臨床表徵 7
五、鼻咽癌治療 7
六、鯽魚膽 8
七、細胞凋亡 9
貳、實驗目的 15
參、材料與方法 16
一、鯽魚膽根部乙醇萃取物之製備 16
二、初步化學成份分析 16
三、細胞培養 18
四、細胞增值及存活分析 20
五、細胞群落形成分析 20
六、體外傷口癒合分析 21
七、細胞移行分析 21
八、流式細胞儀分析 22
九、TUNEL staining 23
十、即時定量聚合酶連鎖反應 24
十一、西方墨點法 26
十二、數據統計分析 28
肆、結果 29
伍、討論 35
陸、參考文獻 41
柒、圖表 61
捌、附錄 79
參考文獻 References
1.行政院衛生福利部統計處,2015。《民國103年死因結果摘要表》。臺北:行政院衛生福利部。<http://www.mohw.gov.tw/cht/DOS/Statistic.aspx?flistno=312&fodlistno=5488>
2.Sham JS, Wei WI, Zong YS, et al. Detection of subclinical nasopharyngeal carcinoma by fibreoptic endoscopy and multiple biopsy. Lancet 1990; 335:371–374.
3.Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61:69–90.
4.Nielsen NH, Mikkelsen F, Hansen JP. Nasopharyngeal cancer in Greenland: the incidence in an Arctic Eskimo population. Acta Pathol Microbiol Scand 1977; 85:850–858.
5.Yu MC, Yuan, JM. Epidemiology of nasopharyngeal carcinoma. Semin. Cancer Res 2002; 12:421–430.
6.Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiology. Biomarkers & Prevention 2006; 15: 17651777.
7.Burt RD, Vaughan TL, McKnight B. Descriptive epidemiology and survival analysis of nasopharyngeal carcinoma in the United States. Int J Cancer 1992; 52:549–556.
8.Lee JT, Ko CY. Has survival improved for nasopharyngeal carcinoma in the United States? Otolaryngol Head Neck Surg 2005; 132:303–30 8.
9.Lee AW, Foo W, Mang O, et al. Changing epidemiology of nasopharyngeal carcinoma in Hong Kong over a 20-year period (1980-99): an encouragingmreduction in both incidence and mortality. Int J Cancer 2003; 103:680–685.
10.Lo KW, To KF, Huang DP. Focus on nasopharyngeal carcinoma. Cancer Cell 2004; 5:423–428.
11.Hsu WL, Yu KJ, Chien YC, et al. Familial tendency and risk of nasopharyngeal carcinoma in Taiwan: effects of covariates on risk. Am J Epidemiol 2011; 173:292–299.
12.Jia WH, Xu ZL, Feng BJ, et al. Epidemiological study of nasopharyngeal carcinoma risk in relatives of high-risk families in Guangdong. Ai Zheng 2004; 23:767–770.
13.Friborg J, Wohlfahrt J, Koch A, et al. Cancer susceptibility in nasopharyngeal carcinoma families-a population-basedcohort study. Cancer Res 2005; 65:8567–8572.
14.Ko JY, Sheen TS, Hsu MM, Lui LT. Familial clustering of nasopharyngeal carcinoma. Otolaryngol Head Neck Surg 1998; 118:736–737.
15.Williams EH, de The’ G. Familial aggregation in nasopharyngeal carcinoma[Letter]. Lancet 1974; 2:295–296.
16.Albeck H, Bentzen J, Ockelmann HH, et al. Familial clusters of nasopharyngeal carcinoma and salivary gland carcinomas in Greenland natives. Cancer 1993; 72:196–200.
17.Jia WH, Collins A, Zeng YX, et al. Complex segregation analysis of nasopharyngeal carcinoma in Guangdong, China: evidence for a multifactorial mode of inheritance (complex segregation analysis of NPC in China). Eur J Hum Genet 2005; 13:248–252.
18.Hildesheim A, Apple RJ, Chen CJ, et al. Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 2002; 94:1780–1789.
19.Chan SH, Day NE, Kunaratnam N, et al. HLA and nasopharyngeal carcinoma in Chinese-a further study. Int J Cancer 1983; 32:171–176.
20.Lu CC, Chen JC, Jin YT, Yang HB, Chan SH, Tsai ST. Genetic susceptibility to nasopharyngeal carcinoma within the HLA-A locus in Taiwanese. Int J Cancer 2003; 103:745–751.
21.Zhang JZ. Correlation between nasopharyngeal carcinoma (NPC) and HLA in Hunan Province. Zhonghua Zhong Liu Za Zhi 1986; 8:170–172.
22.Goldsmith DB, West TM, Morton R. HLA associations with nasopharyngeal carcinoma in Southern Chinese: a meta-analysis. Clin Otolaryngol 2002; 27:61–67.
23.Kongruttanachok N, Sukdikul S, Setavarin S, et al. Cytochrome P450 2E1 polymorphism and nasopharyngeal carcinoma development in Thailand. BMC Cancer 2001; 1:4.
24.Tiwawech D, Srivatanakul P, Karalak A, Ishida T. Cytochrome P450 2A6 polymorphism in nasopharyngeal carcinoma. Cancer Letters 2006; 241:135–141.
25.Deng ZL, Wei YP, Ma Y. Frequent genetic deletion of detoxifying enzyme GSTM1 and GSTT1 genes in nasopharyngeal carcinoma patients in Guangxi Province, China. Chinese Journal of Oncology 2004; 26:598–600.
26.Cho EY, Hildesheim A, Chen CJ, Hsu, et al. Nasopharyngeal carcinoma and genetic polymorphisms of DNA repair enzymes XRCC1 and hOGG1. Cancer Epidemiol Biomarkers Prev 2003; 12:1100–1104.
27.Yu MC, Ho JH, Ross RK, Henderson BE. Nasopharyngeal carcinoma in Chinese-salted fish or inhaled smoke? Prev Med 1981; 10:15–24.
28.Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 2006; 15:1765–1777.
29.Yu MC, Huang TB, Henderson BE. Diet and nasopharyngeal carcinoma: a case-control study in Guangzhou, China. Int J Cancer 1989; 43:1077–82.
30.Yuan JM, Wang XL, Xiang YB, et al. Preserved foods in relation to risk of nasopharyngeal carcinoma in Shanghai, China. Int J Cancer 2000; 85:358–363.
31.Yu MC, Ho JH, Lai SH, Henderson BE. Cantonese-style salted fish as a cause of nasopharyngeal carcinoma: report of a case-control study in Hong Kong. Cancer Res 1986; 46:956–61.
32.Ning JP, Yu MC, Wang QS, Henderson BE. Consumption of salted fish and other risk factors for nasopharyngeal carcinoma (NPC) in Tianjin, a low-risk region for NPC in the People’s Republic of China. J Natl Cancer Inst 1990; 82:291–296.
33.Armstrong RW, Armstrong MJ, Yu MC, Henderson BE. Salted fish and inhalants as risk factors for nasopharyngeal carcinoma in Malaysian Chinese. Cancer Res 1983; 43:2967–2970.
34.Gallicchio L, Matanoski G, Tao XG, et al. Adulthood consumption of preserved and nonpreserved vegetables and the risk of nasopharyngeal carcinoma: a systematic review. Int J Cancer 2006; 119:1125–1135.
35.Yu MC, Nichols PW, Zou XN, et al. Induction of malignant nasal cavity tumours in Wistar rats fed Chinese salted fish. Br J Cancer 1989; 60:198–201.
36.Zheng X, Luo Y, Christensson B, Drettner B. Induction of nasal and nasopharyngeal tumours in Sprague-Dawley rats fed with Chinese salted fish. Acta Otolaryngol 1994; 114:98–104.
37.Yuan JM, Wang XL, Xiang YB, et al. Preserved foods in relation to risk of nasopharyngeal carcinoma in Shanghai, China. Int J Cancer 2000; 85:358–363.
38.Armstrong RW, Armstrong MJ. Environmental risk factors and nasopharyngeal carcinoma in Selangor, Malaysia: a cross-ethnic perspective. Ecol Dis 1983; 2:185–198.
39.Lee HP, Gourley L, Duffy SW, et al. Preserved foods and nasopharyngeal carcinoma: a case-control study among Singapore Chinese. Int J Cancer 1994; 59:585–590.
40.Hsu WL, Chen JY, Chien YC, et al. Independent effect of EBV and cigarette smoking on nasopharyngeal carcinoma: a 20-year follow-up study on 9,622 males without family history in Taiwan. Cancer Epidemiol Biomarkers Prev 2009; 18:1218–1226.
41.Mabuchi K, Bross DS, Kessler II. Cigarette smoking and nasopharyngeal carcinoma. Cancer 1985; 55:2874–2876.
42.Nam JM, McLaughlin JK, Blot WJ. Cigarette smoking, alcohol, and nasopharyngeal carcinoma: a case-control study among U.S. whites. J Natl Cancer Inst 1992; 84:619–622.
43.Zhu K, Levine RS, Brann EA, Gnepp DR, Baum MK. Cigarette smoking and nasopharyngeal cancer: an analysis of the relationship according to age at starting smoking and age at diagnosis. J Epidemiol 1997; 7:107–111.
44.Yuan JM, Wang XL, Xiang YB, et al. Non-dietary risk factors for nasopharyngeal carcinoma in Shanghai, China. Int J Cancer 2000; 85:364–369.
45.Armstrong RW, Imrey PB, Lye MS, et al. Nasopharyngeal carcinoma in Malaysian Chinese: occupational exposures to particles, formaldehyde and heat. Int J Epidemiol 2000; 29:991–998.
46.Albert RE, Sellakumar AR, Laskin S, et al.. Gaseous formaldehyde and hydrogen chloride induction of nasal cancer in the rat. J Natl Cancer Inst 1982; 68:597–603.
47.Hildesheim A, Dosemeci M, Chan CC, et al. Occupational exposure to wood, formaldehyde, and solvents and risk of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 2001; 10:1145–1153.
48.Macsween K, Crawford D. Epstein-Barr virus—recent advances. Lancet Infect Dis 2003; 3:131–140.
49.Gullo C, Low WK, Teoh G. Association of Epstein-Barr virus with nasopharyngeal carcinoma and current status of development of cancer-derived cell lines. Ann Acad Med Singapore 2008; 37:769-77.
50.Old LJ, Boyse EA, Oettgen HF, et al. Precipitating antibody in human serum to an antigen present in cultured Burkitt’s lymphoma cells. Proc Natl Acad Sci U S A 1966; 56:1699–1704.
51.Chang YS, Su LJ, Chung PJ, et al. Detection of an Epstein-Barr-virus variant in T-cell-lymphoma tissues identical to the distinct strain observed in nasopharyngeal carcinoma in the Taiwanese population. Int J Cancer 1995; 62:673–677.
52.Pathmanathan R, Prasad U, Sadler R, et al. Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med 1995; 333:693–698.
53.Henle W, Henle G, Ho HC, Burtin P, Cachin Y, et al. Antibodies to Epstein-Barr virus in nasopharyngeal carcinoma, other head and neck neoplasms, and control groups. J Natl Cancer Inst 1970; 44:225–231.
54.Lin TM, Yang CS, Chiou JF, et al. Antibodies to Epstein-Barr virus capsid antigen and early antigen in nasopharyngeal carcinoma and comparison groups. Am J Epidemiol 1977; 106:336–339.
55.Cheng YC, Chen JY, Glaser R, Henle W. Frequency and levels of antibodies to Epstein-Barr virus-specific DNase are elevated in patients with nasopharyngeal carcinoma. Proc Natl Acad Sci U S A 1980; 77:6162–6165.
56.Hadar T, Rahima M, Kahan E, et al. Significance of specific Epstein-Barr virus IgA and elevated IgG antibodies to viral capsid antigens in nasopharyngeal carcinoma patients. J Med Virol 1986; 20:329–339.
57.Chen JY, Chen CJ, Liu MY, et al. Antibodies to Epstein-Barr virus-specific DNase in patients with nasopharyngeal carcinoma and control groups. J Med Virol 1987; 23:11–21.
58.Wang D, Liebowitz D, Kieff E. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 1985; 43:831–840.
59.Mainou BA, Raab-Traub N. LMP1 strain variants: biological and molecular properties. J Virol 2006; 80:6458–6468.
60.TreiniesI, Paterson HF, Hooper S, Wilson R, Marshall CJ. Activated MEK stimulates expression of AP-1 components independently of phosphatidylinositol 3-kinase (PI3-kinase) but requires a PI3-kinase signal to stimulate DNA synthesis. Molecular and Cellular Biology 1999; 19:321–329.
61.Yung WC, Sham JS, Choy DT, Ng MH. ras mutations are uncommon in nasopharyngeal carcinoma. Eur J Cancer B Oral Oncol B 1995; 31:399–400.
62.Mainou B, Everly D Jr, Raab-Traub N. Epstein-Barr virus latent membrane protein 1 CTAR1mediates rodent and human fibroblast transformation through activation of PI3K. Oncogene 2005; 24:6917–6924.
63.Lin YC, Kim J, You L, et al. Nasopharyngeal carcinoma—review of themolecular mechanisms of tumorigenesis. Head Neck 2008; 30:946–963.
64.Ding L, Li L, Yang J, et al. Epstein-Barr virus encoded latent membrane protein 1 modulates nuclear translocation of telomerase reverse transcriptase protein by activating nuclear factor-κB p65 in human nasopharyngeal carcinoma cells. Int J Biochem Cell Biol 2005; 37:1881–1889.
65.Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Cell and Developmental Biology 2004; 20:781–810.
66.Sriuranpong V, Mutirangura A, Gillespie JW, et al. Global gene expression profile of nasopharyngeal carcinoma by laser capture microdissection and complementary DNA microarrays. Clinical Cancer Research 2004; 10:4944–4958.
67.Morrison J, Gulley M, Pathmanathan R, Raab-Traub N. Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res 2004; 64:5251–5260.
68.Zeng ZY, Zhou YH, Zhang WL, et al. Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. Hum Pathol 2007; 38:120–133.
69.Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005; 9:59–71.
70.Mei YP, Zhou JM, Wang Y, et al. Silencing of LMP1 induces cell cycle arrest and enhances chemosensitivity through inhibition of AKT signaling pathway in EBV-positive nasopharyngeal carcinoma cells. Cell Cycle 2007; 6:1379–1385.
71.Kudo Y, Kitajima S, Ogawa I, et al. Down-regulation of Cdk inhibitor p27 in oral squamous cell carcinoma. Oral Oncol 2005; 41:105–116.
72.Morrison J, Raab-Traub N. Roles of the ITAM and PY motifs of Epstein-Barr virus latent membrane protein 2A in the inhibition of epithelial cell differentiation and activation of β-catenin signaling. J Virol 2005; 79:2375–2382.
73.Hockenbery D, Nunez G, Milliman C, et al. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348:334.
74.Chen MK, Yang SF, Lai JC, et al. Expression of bcl-2 correlates with poor prognosis and modulates migration of nasopharyngeal carcinoma cells. Clinica Chimica Acta 2010; 411:400–405.
75.Fendri A, Kontos CK, Khabir A, et al. BCL2L12 is a novel biomarker for the prediction of short-term relapse in nasopharyngeal carcinoma. Molecular Medicine 2011; 17:163–171.
76.Chen M, Lee H, Chang J, Chang C. Expression of p53 protein and primary tumour volume in patients with nasopharyngeal carcinoma. J Otolaryngol 2004; 33:304–317.
77.Yip KW, Shi M, Pintilie M, et al. Prognostic significance of the Epstein-Barr virus, p53, Bcl-2, and survivin in nasopharyngeal cancer. Clinical Cancer Research 2006; 12:5726–5732.
78.Fu SM, Wang YT, Tu ZH, et al. Study on the expression of survivin mRNA and protein in nasopharyngeal carcinoma. Chinese Journal of Medical Genetics 2008; 25:179–182.
79.Shanmugaratnam K, Sobin LH. Histologic typing of tumors of the upper respiratory tract and ear, 2nd ed. Geneva: World Health Organization, 1991:32–33.
80.Marks JE, Phillips JL, Menck HR. The national cancer data base report on the relationship of race and national origin to the histology of nasopharyngeal carcinoma. Cancer 1998;83:582–588.
81.Marcus KJ, Tishler RB. Head and neck carcinomas across the age spectrum: epidemiology, therapy, and late effects. Seminars in Radiation Oncology 2010;20:52–57.
82.O’Sullivan B. Nasopharynx cancer: therapeutic value of chemoradiotherapy. Int J Radiat Oncol Biol Phys 2007; 69: S118–S121.
83.Leong SS, Wee J, Rajan S, et al. Triplet combination of gemcitabine, paclitaxel, and carboplatin followed by maintenance 5-fluorouracil and folinic acid in patients with metastatic nasopharyngeal carcinoma. Cancer 2008; 113:1332–1337.
84.Chang JT, Ko JK, Hong RL. Recent advances in the treatment of nasopharyngeal carcinoma. J Formos Med Assoc 2004; 103:496–510
85.Peng CI, Chen CH, Leu WP, Yen HF. Pluchea Cass. (Asteraceae: Inuleae) in Taiwan. Bot Bull Acad Sin 1998; 39:287–97
86.Kartick CP, Ria B, Anupama M, et al, Tissue culture of the plant Pluchea indica (L.) Less. and evaluation of diuretic potential of its leaves. Oriental Pharmacy and Experimental Medicine 2007; 7:197–204.
87.Sen T, Dhara AK, Bhattacharjee S, Pal S, Chaudhuri AK. Antioxidant activity of the methanol fraction of Pluchea indica root extract. Phytotherapy Research 2002; 16:331–335.
88.Kirtikar KR, Basu BD. Indian Medicinal Plants. International Book Distributors, Dehradun India 1999; 1344–1345.
89.Chatterjee TK. Herbal Options, M/s Eastern Traders, Calcutta, India, 1996; 183–215.
90.Pramanik KC, Biswas R, Bandyopadhyay D, et al. Hypoglycemic and antihyperglycemic activity of leaf extract of Pluchea indica Less. Orient Pharm Exp Med 2006; 6:232–236.
91.Roslida AH, Erazuliana AK, Zuraini A. Anti-inflammatory and anti noci-ceptive activities of the ethanolic extractof Pluchea indica (L) Less leaf. Pharmacologyonline 2008; 2:349–360.
93.Sen T, Nag Chaudhuri AK. Antiinflammatory evaluation of a Pluchea indica root extract. J Ethnopharmacol 1991; 33:135–141.
94.Biswas R, Dasgupta A, Mitra A, et al. Isolation, purification and characterization of four pure compounds from the root extract of Pluchea indica (L) Less and the potentiality of the root extract and the pure compounds for antimicrobial activity. European Bulletin of Drug Research 2005; 13:63–70.
95.Pal S, Nag Chaudhuri AK. Studies on the effect of Pluchea indica Less. root extract on gastroduodenal ulcer models in rats and guinea pig. Phytother Res 1989; 3:156–158.
96.Biswas R, Dutta PK, Achari B, et al. Isolation of pure compound R/J/3 from Pluchea indica (L.) Less. and its anti-amoebic activities against Entamoeba histolytica. Phytomedicine 2007; 14:534–537.
97.Gomes A, Saha A, Chatterjee I, et al. Viper and cobra venom neutralization by beta-sitosterol and stigmasterol isolated from the root extract of Pluchea indica Less. (Asteraceae). Phytomedicine 2007; 14:637–643
98.Sen T, Basu A, Ray RN, et al. Hepatoprotective effects of Pluchea indica (Less.) extract in experimental acute liver damage in rodents. Phytotherapy Research 1993; 7:352.
99.Cho JJ, Cho CL, Kao CL, et al. Crude aqueous extracts of Pluchea indica (L.) less. Inhibit proliferation and migration of cancer cells through induction of p53-dependent cell death. BMC Complementary and Alternative Medicine 2012; 12:265.
100.Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35:495–516.
101.Roy S, Nicholson DW. Cross-talk in cell death signaling. J Exp Med 2000; 192:21–26.
102.Kim YA, Choi BT, Lee YT, et al. Resveratrol inhibits cell proliferation and induces apoptosis of human breast carcinoma MCF-7 cells. Oncol Rep 2004; 11:441–446.
103.Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004; 305:626–629.
104.Boatright KM, Renatus M, Scott FL, et al. A unified model for apical caspase activation. Mol Cell 2003; 11:529–541.
105.Danial NN. BCL-2 Family Proteins: Critical Checkpoints of Apoptotic Cell Death Clin. Cancer Res 2007; 13:7254
106.Elkholi R, Floros KV, Chipuk J E. The Role of BH3-Only Proteins in Tumor Cell Development, Signaling, and Treatment. Genes & Cancer 2011; 2:52337.
107.Burlacu A. Regulation of apoptosis by Bcl-2 family proteins. J Cell Mol Med 2003; 7:249–57.
108.Yang E, Zha J, Jockel J, et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995; 80:285–91.
109.Newmeyer DD, Bossy-Wetzel E, Kluck RM, ey al. Bcl-xL does not inhibit the function of Apaf-1. Cell Death Differ 2000; 7:402–407.
110.Hock AK, Vousden KH. Tumor suppression by p53: fall of the triumvirate? Cell 2012; 149:11831185.
111.Nayak G, Cooper GM. p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase/Akt/GSK3 signaling. Cell Death & Disease 2012; 3:e400.
112.Pflaum J, Schlosser S, Muller M. p53 Family and Cellular Stress Responses in Cancer. Frontiers in Oncology 2014; 4:285.
113.Uo T, Kinoshita Y, Morrison RS. Apoptotic actions of p53 require transcriptional activation of PUMA and do not involve a direct mitochondrial/cytoplasmic site of action in postnatal cortical neurons. J Eurosci 2007; 27:12198–12210.
114.Chipuk JE, Bouchier-Hayes L, Kuwana T, et al. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 2005; 309:1732–1735.
115.Schuler M, Green DR. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 2001; 29:684–688.
116. Thornborrow EC, Patel S, Mastropietro AE, et al. A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes. Oncogene 2002; 21:990–999.
117.Liu FT, Newland AC, Jia L. Bax conformational change is a crucial step for PUMA-mediated apoptosis in human leukemia. Biochem Biophys Res Commun 2003; 310:956–62.
118.Nakano K, Vousden KH. PUMA, a novel proapoptotic gene,is induced by p53. Mol Cell 2001; 7:683–694.
119.Oda E, Ohki R, Murasawa H, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000; 288:1053–1058.
120.Nagata S, Golstein P. The Fas death factor. Science 1995; 267:1449-56.
121.Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281:1305–1308.
122.Attardi LD, Reczek EE, Cosmas C, et al. PERP, an apoptosis–associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev 2000; 14:704–718.
123.Marinova D, Ribarova F, Atanassova M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J of the Univ Chem Technol 2005; 40:255–260.
124.Ashish S, Sharma RA. Antioxidant activity with Total Phenolic constituents from Aerva tomentosa Forsk. International J Pharma and Bio Sci 2011; 2:596–603.
125.Otang WM, Grierson DS, Ndip RN. Phytochemical studies and antioxidant activity of two South African medicinal plants traditionally used for the management of opportunistic fungal infections in HIV/AIDS patients. BMC Complementary and Alternative Medicine 2012; 12:43.
126.Zapata-Bustos R, Alonso-Castro AJ, Gomez-Sanchez M. et al. Ibervillea sonorae (Cucurbitaceae) induces the glucose uptake in human adipocytes by activating a PI3K-independent pathway. Journal of Ethnopharmacology 2014; 152:546–552.
127.Hwang YC, Lu TY, Huang DY, et al. NOLC1, an enhancer of nasopharyngeal carcinoma progression, is essential for TP53 to regulate MDM2 expression. The American Journal of Pathology 2009; 175:342–354.
128.Tan W, Lu J, Huang M, et al. Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 2011; 6:27.
129.Karna P, Chagani S, Gundala SR, et al. Polyphenol-rich sweet potato greens extract inhibits proliferation and induces apoptosis in prostate cancer cells in vitro and in vivo. Carcinogenesis 2011; 32: 1872–1880.
130.Nishino H, Satomi Y, Tokuda H, et al. Cancer control by phytochemicals. Curr Pharm Des 2007; 13:33943399.
131.Ozgen M, Schreerens JC, Reese RN, et al. Total phenolic, anthocyanidin contents and antioxidant capacity of selected elderberry (Sambucus canadensis L.) accession. Pharmacog Mag 2010; 6:198–203.
132.Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry 2000; 55: 481–504.
133.Kanadaswami C, Lee LT, Lee pp, et al. The Antitumor Activities of Flavonoids. In Vivo 2005; 19: 895–910.
134.Huang YT, Hwang JJ, Lee PP, et al. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol 1999; 128:999–1010.
135.So FV, Guthrie N, Chambers AF, et al. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer 1996; 26:167–181.
136.Ende C, Gebhardt R. Inhibition of matrix metalloproteinase- 2 and -9 activities by selected flavonoids. Planta Med 2004; 70:1006–1008.
137.Cos P, De Bruyne T, Hermans N, et al. Proanthocyanidins in health care: current and new trends. Curr Med Chem 2004; 11:1345–1359.
138.Madhavi DL, Salunkhe DK. Food antioxidants. Toxicological Aspects of Food Antioxidants 1995; 267.
139.Mohamad S, Zin NM, Wahab HA, et al. Antituberculosis potential of some ethnobotanically selected Malaysian plants. Journal of Ethnopharmacology 2011; 133:10211026.
140.Arsiningtyas IS, Gunawan-Puteri MD, Kato E, et al. Identification of alpha-glucosidase inhibitors from the leaves of Pluchea indica (L.) Less., a traditional Indonesian herb: promotion of natural product use. Natural Product Research 2014; 28:13501353.
141.Buapool D, Mongkol N, Chantimal J. et al. Molecular mechanism of anti-inflammatory activity of Pluchea indica leaves in macrophages RAW 264.7 and its action in animal models ofinflammation. Journal of Ethnopharmacology 2013; 146:495504.
142.Segawa Y, Oda Y, Yamamoto H, et al. Overexpression of inducible nitric oxide synthase and accumulation of 8-OHdG in nasopharyngeal carcinoma. Histopathology 2008; 52:213223.
143.Murata M, Thanan R, Ma N, et al. Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. Journal of Biomedicine & Biotechnology 2012; 2012:623019.
144.Ren Q, Sato H, Murono S, et al. Epstein-Barr virus (EBV) latent membrane protein 1 induces interleukin-8 through the nuclear factor-kappa B signaling pathway in EBV-infected nasopharyngeal carcinoma cell line. The Laryngoscope 2004; 114:855859.
145.Sun W, Guo MM, Han P, et al. Id-1 and the p65 subunit of NF-kappaB promote migration of nasopharyngeal carcinoma cells and are correlated with poor prognosis. Carcinogenesis 2012; 33:810817.
146.Woynarowska BA, Woynarowski JM. Preferential targeting of apoptosis in tumor versus normal cells. Biochimica et Biophysica Acta 2002; 1587:309–317.
147.Ahmad A, Stefani S. Distant metastases of nasopharyngeal carcinoma: a study of 256 male patients. Journal of Surgical Oncology 1986; 33: 194197.
148.Li XJ, Peng LX, Shao JY, et al. As an independent unfavorable prognostic factor, IL-8 promotes metastasis of nasopharyngeal carcinoma through induction of epithelial-mesenchymal transition and activation of AKT signaling. Carcinogenesis 2012; 33:13021309.
149.Geara FB, Sanguineti G, Tucker SL, et al. Carcinoma of the nasopharynx treated by radiotherapy alone: determinants of distant metastasis and survival. Radiotherapy and Oncology 1997; 43:5361.
150.Zhang X, Guo Y, Ye Q, et al. Study of the relation between MMP2, MMP9 and nasopharyngeal carcinoma. Journal of Clinical Otorhinolaryngology 1999; 13:356358.
151.Sun B, Xu M. Matrine inhibits the migratory and invasive properties of nasopharyngeal carcinoma cells. Molecular Medicine Reports 2015; 11:41584164.
152.Ohtsuki T, Yokosawa E, Koyano T, et al. Quinic acid esters from Pluchea indica with collagenase, MMP-2 and MMP-9 inhibitory activities. Phytotherapy Research 2008; 22:264266.
153.Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25:4798–4811.
154.Safarzadeh E, Sandoghchian Shotorbani S. Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. Advanced Pharmaceutical Bulletin 2014; 4:421427.
155.Zhang N, Kong X, Yan S. et al. Huaier aqueous extract inhibits proliferation of breast cancer cells by inducing apoptosis. Cancer Sci 2010; 101:2375–2383.
156.Tang W, Liu JW, Zhao WM, et al. Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sciences 2006; 80:205–211.
157.Del Poeta G, Venditti A, Del Principe MI, et al. Amount of spontaneous apoptosis detected by bax/bcl-2 ratio predicts outcome in acute myeloid leukemia (aml). Blood 2003; 101:21252131.
158.Yu Q. Restoring p53-mediated apoptosis in cancer cells: new opportunities for cancer therapy. Drug Resist Updat 2006; 9:19−25.
159.Hock AK, Vousden KH. Tumor suppression by p53: fall of the triumvirate? Cell 2012; 149:11831185.
160.Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 2000; 275:16202–16212.
161.Leu JI, Dumont P, Hafey M, et al. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 2004; 6:443450.
162.Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004; 303:1010−1014.
163.Mihara M, Erster S, Zaika A, Petrenko O, et al. p53 has a direct apoptogenic role at the mitochondria. Molecular Cell 2003; 11:577590.
164.Zeng GQ, Yi H, Li XH, et al. Identification of the proteins related to p53-mediated radioresponse in nasopharyngeal carcinoma by proteomic analysis. Journal of Proteomics 2011; 74:27232733.
165.Pan JJ, Zhang SW, Chen CB, et al. Effect of recombinant adenovirus-p53 combined with radiotherapy on long-term prognosis of advanced nasopharyngeal carcinoma. Journal of Clinical Oncology 2009; 27:799804.
166.Choudhuri T, Pal S, Agwarwal ML et al. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Letters 2002; 512:334−340.
167.Chipuk J E, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004; 303:10101014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code