Responsive image
博碩士論文 etd-0612116-105557 詳細資訊
Title page for etd-0612116-105557
論文名稱
Title
某工業區之空氣品質分析及大氣中揮發性有機物時空特徵調查
Air Quality Analysis and Temporal Characteristics of Volatile Organic Compounds in One Industrial Park
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
137
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-03
繳交日期
Date of Submission
2016-07-12
關鍵字
Keywords
主成分分析、最大增量反應性、空氣污染物、揮發性有機物、臭氧生成潛勢
Ozone formation potential (OFP), Maximum incremental reactivity (MIR), Principal component analysis (PCA), Volatile organic compounds (VOCs), Air pollutants
統計
Statistics
本論文已被瀏覽 5696 次,被下載 57
The thesis/dissertation has been browsed 5696 times, has been downloaded 57 times.
中文摘要
本研究於台灣南部某工業區第二園區進行空氣污染物與揮發性有機物(Volatile Organic Compounds, VOCs)之檢測,探討第二園區從整地/建造大樓到廠商營運不同階段之空氣品質分析及VOCs濃度時空分布與特徵,且依最大增量反應性(MIR)推估臭氧生成潛勢(OFP)並利用主成分分析(Principal Component Analysis, PCA)進行污染來源解析。

空氣污染物分析方面,依季節分布之結果顯示,指標污染物皆為PM10,夏季各空氣污染物濃度較低,主要因對流旺盛,污染物擴散佳,且高雄地區夏季有較多降雨機會,有利於污染物的洗滌,冬(春)季則因大氣混和層高度較低,不利於污染物與大氣的混和,擴散不佳而濃度較高;時段分布結果顯示,冬(春)、夏兩季各空氣污染物逐時變化趨勢相似,PM10、CO、NOX及THC皆於日間活動強度較強或上下班車流量尖峰時段而有高值產生;O3則於日間為高濃度時段,夜間濃度下降;NMHC變化趨勢則與O3相反;CH4 及SO2則無明顯變化趨勢。

VOCs分析方面,依採樣點分布,最高濃度之物種分別為,S1 G點為丙烷(35.25 ppb),H點為甲醇(24.55 ppb);S2 G點及H點皆為甲醇(28.80 ppb,17.10 ppb);S3 G點及H點皆為甲醇(23.55 ppb,11.55 ppb);W1 G點及H點皆為甲醇(19.25 ppb,20.95 ppb);W2 G點為乙腈(13.80 ppb),H點為甲醇(9.90 ppb),W3 G點及H點皆為乙腈(8.40 ppb,8.95 ppb)。依百分比組成,夏季以芳香族、醇類及烷類為主,冬(春)季則以醇類、酮類、芳香族及烷類為主。依時段分布,日間及夜間皆以醇類、烷類及芳香族為主要污染物,分別占TVOC 71.18 %及68.55 %。

臭氧生成潛勢方面,依最大增量反應性計算,W1之OFP為94.70 μg-O3/m3;S1之OFP為338.27 μg-O3/m3;W2之OFP為59.34 μg-O3/m3;S2之OFP為762.06 μg-O3/m3;W3之OFP為77.23 μg-O3/m3;S3之OFP為71.20 μg-O3/m3。其中W1、S1、W2及S2 OFP最高之物種為芳香族(33.10–61.95 %),W3最高為烷類(54.47 %),其次為芳香族(31.68 %),S3最高為醇類(34.72 %),其次為芳香族(24.69%),顯示二園區內以芳香族為主要臭氧生成因子。

主成分分析方面,夏季VOCs貢獻源包括煉油廠儲槽與製程管道逸散、移動源尾氣排放、煉油廠/石化廠逸散、工業溶劑與油漆塗料逸散、半導體廠逸散及第一園區內產業(塑膠產業、印刷電路板產業及半導體廠等)逸散傳輸;冬季VOCs貢獻源有移動源尾氣、油品/儲油槽逸散、半導體封裝廠逸散、第一園區產業(塑膠產業、印刷電路板產業及半導體廠等)逸散傳輸。
Abstract
In this study the detection of air pollutants and Volatile Organic Compounds (VOCs) has been carried out in the second zone of one particular Industrial Zone in southern Taiwan. It is for investigating the air quality analysis and temporal/spatial distribution and feature of VOCs at different stages from land preparation/building construction to company operation, while the ozone formation potential (OFP) is estimated in accordance with maximum incremental reactivity (MIR) and the pollution source analysis has been carried out by using Principal Component Analysis (PCA).

In terms of air pollutant analysis, the result of seasonal distribution has revealed that the indicative pollutants are all PM10. The concentrations of all air pollutants are rather low in summer because strong convection facilitates pollutants diffusion. The higher probability of rainfall in Kaohsiung during summer time also helps wash away these pollutants. The atmospheric mixture layer is at a lower height during winter (spring) such that it works against the mixture of pollutants and atmosphere, thus leading to poor diffusion and higher concentration; the result of time distribution has indicated that the time varying trends of air pollutants during winter (spring) and summer are similar, where the peaks of PM10, CO, NOX and THC all takes place during the time with greater activity intensity in day time or during peak traffic hours; the O3 concentration is high during day time and reduce during night time; the variation trend of NMHC is just the opposite to O3; and there is no significant variation trend for CH4 and SO2.

The sampling point distribution method has been adopted for VOCs analysis, and the species with highest concentrations are: for S1, G point is propane (35.25 ppb), H point is methanol (24.55 ppb); for S2, both G point and H point are methanol (28.80 ppb,17.10 ppb); for S3, both G point and H point are methanol (23.55 ppb,11.55 ppb); for W1, both G point and H point are methanol (19.25 ppb,20.95 ppb); for W2, G point is acetonitrile (13.80 ppb), and H point is methanol (9.90 ppb); for W3, G point and H point are Acetonitrile (8.40 ppb,8.95 ppb). By percentage composition, in summer it is mainly composed of aromatics, alcohols and alkanes, in winter (spring) it is mainly composed of alcohols, ketones, aromatics, and alkanes. Based on time distribution, alcohols, alkanes, and aromatics are primary pollutants during both day time and night time, while they are accounting for 71.18 % and 68.55 % of TVOC respectively.

In terms of ozone formation potential calculated by maximum increment reactivity, for W1 the OFP is 94.70 μg-O3/m3; for S1 the OFP is 338.27 μg-O3/m3; for W2 the OFP is 59.34 μg-O3/m3; for S2 the OFP is 762.06 μg-O3/m3; for W3 the OFP is 77.23 μg-O3/m3; and for S3 the OFP is 71.20 μg-O3/m3. The species with the highest OFP among W1, S1, W2 and S2 is aromatics (33.10–61.95 %). For W3, alkanes are equipped with the highest OFP (54.47 %) followed by aromatics (31.68 %). For S3, alcohols are equipped with the highest OFP (34.72 %) followed by aromatics (24.69%). This is the indication that aromatics are the primary ozone generation factor in the second zones.

In terms of principal component analysis, the sources of VOCs in summer include escape from storage tanks and process pipelines of oil refinery, emission of exhaust of mobile source, escape from oil refinery/petrochemical factory, escape from industrial solvents and paints, escape from semiconductor factory, and escape from industries in the first zone (plastic industry, printed circuit board industry, and semiconductor factory); the sources of VOCs in winter include exhaust of mobile source, escape from oil/oil storage tank, escape from semiconductor packaging factory, and escape from industries in the first zone (plastic industry, printed circuit board industry, and semiconductor factory).
目次 Table of Contents
謝誌 i
摘要 ii
ABSTRACT iv
目錄 vii
圖目錄 x
表目錄 xii

第一章 前言 1
1.1研究源起 1
1.2研究目標 2
第二章 文獻回顧 3
2.1 第一園區空氣污染物特徵分布 3
2.1.1 空氣品質監測 3
2.1.2 揮發性有機物分布 3
2.1.3 臭氧生成潛勢 4
2.1.4 主成分分析 4
2.2 第二園區概況 4
2.3 空氣品質及氣象概述 5
2.3.1 高雄地區氣象概況 5
2.3.2 高雄地區空氣品質概述 8
2.3.3 空氣污染指標(PSI) 10
2.4 大氣中揮發性有機物(VOCs) 12
2.4.1 移動源之揮發性有機物 12
2.4.2 固定源之揮發性有機物 14
2.5 揮發性有機物之影響 17
2.5.1 光化學反應 17
2.5.2 臭氧生成潛勢 19
2.6 因子分析/主成分分析 22
第三章 實驗方法與流程 24
3.1 研究架構 24
3.2 採樣與規劃 25
3.2.1 採樣點描述 25
3.2.2 採樣時程規劃 26
3.3採樣設備與分析方法 27
3.3.1揮發性有機物(VOCs) 27
3.3.2 空氣品質連續監測 32
3.4 因子分析/主成分分析理論 37
第四章 結果與討論 39
4.1 第二園區空氣品質分析 39
4.1.1 空氣污染物濃度季節變化 39
4.1.2 空氣污染物逐時變化 41
4.2 第二園區內揮發性有機物濃度 47
4.2.1 揮發性有機物之季節分布 47
4.2.2 第二園區揮發性有機物之時段分布 73
4.3 氣象因子與各污染物之相關性 77
4.4 第二園區內臭氧生成潛勢 78
4.5 主成分分析 87
第五章 結論與建議 98
5.1 結論 98
5.2 建議 100
參考文獻 101
參考文獻 References
Chang, C. C., Wang, J. L., Candice Lung, S. C., Liu, S. C., & Shiu, C. J. (2009). Source characterization of ozone precursors by complementary approaches of vehicular indicator and principal component analysis. Atmospheric Environment, 43(10), 1771–1778.
Choi, S.-W., Park, S.-W., Lee, C.-S., Kim, H.-J., Bae, S., & Inyang, H. I. (2009). Patterns of VOC and BTEX concentration in ambient air around industrial sources in Daegu, Korea. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering, 44(1), 99–107.
Franco, J. F., Pacheco, J., Belalcázar, L. C., & Behrentz, E. (2015). Characterization and source identification of VOC species in Bogot??, Colombia. Atmosfera, 28(1), 1–11.
Kuo, C.-P., Liao, H.-T., Chou, C. C.-K., & Wu, C.-F. (2014). Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data. The Science of the Total Environment, 472, 880–7.
Lin, C.-C., Lin, C., Hsieh, L.-T., Chen, C.-Y., & Wang, J.-P. (2011). Vertical and diurnal characterization of volatile organic compounds in ambient air in urban areas. Journal of the Air & Waste Management Association (1995), 61(7), 714–720.
Lin, T. Y., Sree, U., Tseng, S. H., Chiu, K. H., Wu, C. H., & Lo, J. G. (2004). Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan. Atmospheric Environment, 38(25), 4111–4122.
Lin, Y. C., Chang, F. T., Bai, H., & Pei, B. S. (2005). Control of VOCs emissions by condenser pre-treatment in a semiconductor fab. Journal of Hazardous Materials, 120(1-3), 9–14. http://doi.org/10.1016/j.jhazmat.2004.12.035
Liu, P. W. G., Yao, Y. C., Tsai, J. H., Hsu, Y. C., Chang, L. P., & Chang, K. H. (2008). Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Science of the Total Environment, 398(1-3), 154–163.
McNabola, A., Broderick, B. M., & Gill, L. W. (2009). A principal components analysis of the factors effecting personal exposure to air pollution in urban commuters in Dublin, Ireland. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering, 44(12), 1219–1226.
Ni, Z., Liu, J., Song, M., Wang, X., Ren, L., & Kong, X. (2015). Characterization of odorous charge and photochemical reactivity of VOC emissions from a full-scale food waste treatment plant in China. Journal of Environmental Sciences (China), 29, 34–44.
Rivera-Austrui, J., Borrajo, M. A., Martinez, K., Adrados, M. A., Abalos, M., Van Bavel, B., … Abad, E. (2011). Assessment of polychlorinated dibenzo-p-dioxin and dibenzofuran emissions from a hazardous waste incineration plant using long-term sampling equipment. Chemosphere, 82(9), 1343–1349.
Taylor, P., Chein, H., & Chen, T. M. (2012). Emission Characteristics of Volatile Organic Compounds from Semiconductor Manufacturing Emission Characteristics of Volatile Organic Compounds from Semiconductor Manufacturing. Journal of the Air & Waste Management Association, 2247(May 2013), 37–41.
Tsai, J. H., Huang, Y. S., Shieh, Z. X., & Chiang, H. L. (2011). Concentration characteristics of VOCs and acids/bases in the gas phase and water-soluble ions in the particle phase at an electrical industry park during construction and mass production. Journal of Environmental Science and Health, Part A, 46(5), 540–551.
Wang, J., Jin, L., Gao, J., Shi, J., Zhao, Y., Liu, S., … Wu, C. Y. (2013). Investigation of speciated VOC in gasoline vehicular exhaust under ECE and EUDC test cycles. Science of the Total Environment, 445-446, 110–116.
Yen, C.-H., & Horng, J.-J. (2009). Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering, 44(April 2013), 1424–1429.

李秋明,2004,「高科技工業廢水中揮發性有機物分析與調查研究」,國立高雄第一科技大學環境與安全衛生工程所碩士論文。
曹秀婷,2010,「油品儲運站聯通固定頂槽系統揮發性有機物排放量之推估」,國立高雄海洋科技大學海洋環境工程研究所碩士論文。
林嘉祥,2011,「某工業區大氣中揮發性有機物時空特徵調查及臭氧生成潛勢之分析」,國立中山大學環境工程研究所碩士論文。
劉至中,2012,「石化工業區空氣中揮發性有機物與含硫異味物質季節變化趨勢及污染源排放特徵之相關性分析」,國立中山大學環境工程研究所碩士論文。
顏有利、魏德華、林乃芸及林蓁君,2014,「自動變速箱車輛於爬坡道上尾氣排放揮發性有機物特性之研究」,第16屆海峽兩岸環境保護研討會論文。
羅沐恩,2014,「光電業揮發性有機物之大氣反應」,國立屏東科技大學環境工程與科學系所碩士論文。
林忠霆,2014,「南部某工業區大氣中揮發性有機物時空特徵調查」,國立中山大學環境工程研究所碩士論文。
陳揚桓,2014,「南部某工業園區空氣品質與異味調查」,國立中山大學環境工程研究所碩士論文。
杜彥輝,2015,「以主成分分析及專家法探討國軍心理素質訓練之研究」,國防大學管理學院運籌管理學系碩士論文。
高雄市政府環境保護局,2012,「101–102年固定污染源許可管制計畫」,高雄市環保局。
經濟部加工出口區,2015,「104–106年度楠梓園區空氣品質調查分析計畫」,高雄市楠梓加工區。
行政院環保署,2014,「台灣空氣污染排放量推估手冊(TEDS8.1)」,環保署。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code