Responsive image
博碩士論文 etd-0612116-105823 詳細資訊
Title page for etd-0612116-105823
論文名稱
Title
利用ISCST3模式解析半導體封裝製程VOCs與異味污染物排放對區域性之影響
Analysis the regional impacts due to emission from the VOCs and odor pollutions in the semiconductor packaging processes using the ISCST3 model
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
137
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-03
繳交日期
Date of Submission
2016-07-12
關鍵字
Keywords
三甲基胺、高斯擴散模擬、異味污染物、異丙醇、二甲基硫
Gaussian diffusion model simulation, Malodorous pollutants, isopropyl alcohol, dimethyl sulfide, trimethylamine
統計
Statistics
本論文已被瀏覽 5640 次,被下載 749
The thesis/dissertation has been browsed 5640 times, has been downloaded 749 times.
中文摘要
半導體產業於晶圓製程、封裝測試及清洗作業中常使用異丙醇(IPA)及酮類揮發性有機溶劑,而不少揮發性有機物(VOCs)在光化作用下會與氮氧化物反應,形成臭氧及光化學煙霧。此外,某些嗅味閾值低的硫及胺類化合物,如硫化甲基(DMS)及三甲基胺(TMA),即使少量逸散至空氣中,亦可能造成惡臭及民怨。因此,本研究以檢測值及擴散模式(ISCST3)來評估此類異味物對周圍環境之影響,並提出改善措施。
本研究檢測某半導體封裝測試廠內二個製程VOCs、IPA、DMS及TMA管道排放口的濃度。A廠(M21)製程兩次檢測結果顯示,TVOC(總VOC) 707.8–7,763.5 ppb,以酮類(28.78–75.62%)及醇類(23.83–65.62%)為大宗。B廠(M02)製程兩次檢測結果顯示,TVOC為976.7–1,110.2 ppb,以酮類(34.00–47.70%)、醇類(12.70–39.27%)及腈類(6.56–49.35%)為大宗。此二製程廢水池排放的TMA皆低於偵測極限(MDL=1.49 ppb);但A廠及B廠製程廢水池排放之DMS濃度分別為0.0195及1.43 ppm,皆遠高於嗅味閾值(= 0.001 ppm)。
以ISCST3擴散模擬A廠及B廠同時排放甲醇、丙酮及DMS(二甲基硫)對區域性的影響顯示,最大著地濃度在廠區下風200公尺處,分別為0.0011、0.0038 及0.0035 ppm;擴散至下風300公尺國宅處之增量分別為0.0001、0.003 及0.003 ppm,僅DMS濃度高出嗅覺閾值(= 0.001 ppm)。減量模擬結果顯示,當A廠及B廠DMS排放濃度同時控制在0.45 ppm以下時,擴散至下風300公尺住宅區處之著地濃度則可低於嗅覺閾值。
Abstract
Isopropyl alcohol (IPA), ketones, and other volatile organic compounds (VOCs) are often used during wafer processing, packaging, test, and cleaning processes in the semiconductor industry. Many of these VOCs tend to undergo photo reactions with nitrogen gas to form ozone and other photochemical smog. Sulfides or amines such as dimethyl sulfide (DMS) and trimethylamine (TMA) with low odor detection threshold values could generate strong smells and public complaints even when only small amounts of such chemical were released into the atmosphere. This study therefore used detection values and diffusion modes (ISCST3) in order to evaluate the impacts of such malodorous compounds when released into the surrounding environment. Improvement measures were proposed as well.
This study investigated the concentrations of VOCs, IPA, DMS, and TMA at the emissions outlets for 2 processes within a selected semiconductor packaging and test facility. Results from 2 measurements taken at the Factory A (M21) process showed a total VOC (TVOC) of 707.8 to 7,763.5 ppb. Major components within the gas emissions were: ketones (28.78 to 75.62%) and alcohols (23.83 to 65.62%). Results from 2 measurements taken at the Factory B (M02) process showed a TVOC of 976.7 to 1,110.2 ppb. Major components within the gas emissions were: ketones (34.00 to 47.70%), alcohols (12.70 to 39.27%), and nitriles (6.56 to 49.35%). TMA released from the wastewater treatment pools of these 2 processes were lower than the detection threshold (MDL = 1.49 ppb). However, concentrations of DMS released from the wastewater treatment pools of Factory A and Factory B were 0.0195 and 1.43 ppm respectively, greatly exceeding the odor detection threshold ( = 0.001 ppm).
The ISCST3 diffusion model was used to simulate regional impact resulting from the simultaneous release of methanol, acetone, and DMS from Factory A and Factory B. Simulation results showed that maximum ground level concentrations were 0.0011 ppm, 0.0038 ppm, and 0.0035 ppm for methanol, acetone, and DMS respectively, and occurred 200 meters downwind of the factory area. In the public housing area 300 meters downwind of the factories, ground level concentrations were 0.0001 ppm, 0.003 ppm, and 0.003 ppm for methanol, acetone, and DMS respectively, showing that only DMS concentration exceeded the odor detection threshold ( = 0.001 ppm). Simulations were carried out again with the assumption that volume reduction measures were in place, helping to limit DMS concentrations to below 0.45 ppm at the emission outlets for both Factory A and Factory B. Outcomes showed that ground concentrations of DMS in the public housing area 300 meters downwind of the factories became lower than the odor detection threshold.
目次 Table of Contents
致謝…………………………………………………………………………………….i
摘要……………………………………………………………………………………ii
ABSTRACT………………………………………………………………………….iii
目錄…………………………………………………………………………………....v
表目錄……………………………………………………………………………….viii
圖目錄………………………………………………………………………………....x

第一章 前言………………………………………………………………………… 1
1.1 研究源起 1
1.2 研究目的 2
第二章 文獻回顧…………………………………………………………………… 3
2.1園區概況 3
2.2半導體廠製程介紹 3
2.3半導體產業空氣污染物排放特性 5
2.4法規標準 10
2.5控制設備介紹 13
2.6臭氧危害與生成機制 19
2.6.1光化學反應 19
2.6.2臭氧與VOC/NOX敏感性 21
2.7臭/異味物質特性 22
2.8高斯擴散應用 26
第三章 研究方法....................................................................................32
3.1研究架構與流程 32
3.2排放管道採樣地點及時程規劃 33
3.3採樣分析方法與程序 34
3.3.1排放管道中揮發性有機物(VOCs)檢測 34
3.3.2 排放管道中異丙醇檢測 39
3.3.3 排放管道中三甲基胺檢測 41
3.3.4 排放管道中二甲基硫檢測 43
3.4光反應性指標介紹 44
3.4.1最大增量反應性(MIR) 44
3.4.2臭氧生成潛勢(OFP) 45
3.5 ISCST3模式介紹 46
3.5.1高斯擴散方程式 48
3.5.2下風與橫風的距離 49
3.5.3風速剖面 50
3.5.4擴散係數–大氣穩定度 51
3.5.4-1鄉村型 52
3.5.4-2都市型 54
3.5.5大氣混合層高度 57
3.5.6 受體資料 59
第四章 結果與討論..................................................................................60
4.1 煙道採樣時之氣象資料 60
4.2排放管道中廢氣污染物 64
4.2.1排放管道中揮發性有機物特性 – 103年12月16日K12廠排放管道檢測結果 64
4.2.2排放管道中揮發性有機物特性 – 104年3月17日K12廠排放管道檢測結果 69
4.2.3排放管道中揮發性有機物特性 – 104年1月9日K7廠排放管道檢測結果 72
4.2.4排放管道中揮發性有機物特性 – 104年4月14日K7廠排放管道檢測結果 75
4.3 臭氧生成潛勢(OFP) 82
4.4 排放係數及排放量推估 86
4.4.1排放係數 88
4.4.2排放量推估 88
4.5大氣擴散模擬結果 91
4.5.1異味污染物擴散模擬 96
4.6 ISCST3模擬與周界實測值比較污染趨勢 102
第五章 結論與建議.……………………………………………………………103
5.1 結論 103
5.2建議 104
參考文獻 105
附錄、B廠及A廠檢測濃度值 114
附表A-1 B廠濃度檢測值 115
附表A-2 A廠區檢測濃度 120
參考文獻 References
Agency, U.S.E.P.A.,1995. User’S Guide for the Industrial Source Complex(Isc3) Dispersion Models Volume II-Description of Model Algorithms.Source, II(September), 1–128.
Banerjee, T., Barman, S. C., & Srivastava, R. K. (2011). Application of air pollution dispersion modeling for source-contribution assessment and model performance evaluation at integrated industrial estate-Pantnagar. Environmental Pollution, 159(4), 865–875.
Garcia-Diaz, J.C.,& Gozalvez-Zafrilla, J. M. (2012). Uncertainty and sensitive analysis of environmental model for risk assessments: An industrial case study. Reliability Engineering and System Safety, 107, 16–22.
Chang, S., Lin, K., Y. A., & Lu, C. (2014). Efficient adsorptive removal of Tetramethylammonium hydroxide (TMAH) from water using graphene oxide. Separation and Purification Technology, 133, 99–107.
Chen, M.-H. (2015). A Feasible Approach to Quantify Fugitive VOCs from Petrochemical Processes by Integrating Open-Path Fourier Transform Infrared Spectrometry Measurements and Industrial Source Complex (ISC) Dispersion Model. Aerosol and Air Quality Research, 2015(3), 1110–1117.
Chmielewski, A.G., Ostapczuk, A., Zimek, Z., Licki, J., Kubica, K. (2002) Reduction of VOCs in flue gas from coal combustion by electron beam treatment. Radiation Physics and Chemistry 63(3-6), 653-655.
Dumanoglu, Y., Kara, M., Altiok, H., Odabasi, M., Elbir, T., Bayram, A., 2014. Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region, Atmospheric Environment 98, 168-178.
Jeong, H., Kim, E., Park, M., Jeong, H., Hwang, W., & Han, M. (2014). Numerical simulation of air pollutant dispersion using an in situ tracer experiment at a nuclear site. Annals of Nuclear Energy, 73, 1–6.
Jian, R. S., Wang, T. Y., Song, L. Y., Kuo, C. Y., Tian, W. C., Lo, E. W., & Lu, C. J. (2015). Field investigations and dynamic measurements of process activity induced VOCs inside a semiconductor cleanroom. Building and Environment, 94, 287–295.
Khan, M. a. H., Cooke, M. C., Utembe, S. R., Archibald, a. T., Maxwell, P., Morris, W. C., Shallcross, D. E. (2015). A study of global atmospheric budget and distribution of acetone using global atmospheric model STOCHEM-CRI. Atmospheric Environment, 112, 269–277.
Leidinger, M., Rieger, M., Weishaupt, D., Sauerwald, T., Nagele, M., Hurttlen, J., & Schutze, A. (2015). Trace gas VOC detection using metal-organic frameworks as preconcentrators and semiconductor gas sensors. Procedia Engineering, 120, 1042–1045.
Lin, S. H., & Wang, C. S. (2004). Recovery of isopropyl alcohol from waste solvent of a semiconductor plant. Journal of Hazardous Materials, 106(2-3), 161–168.
Lin, Y. C., Chang, F. T., Bai, H., & Pei, B. S. (2005). Control of VOCs emissions by condenser pre-treatment in a semiconductor fab. Journal of Hazardous Materials, 120(1-3), 9–14.
Ling, Z. H., & Guo, H. (2014). Contribution of VOC sources to photochemical ozone formation and its control policy implication in Hong Kong. Environmental Science & Policy, 38, 180–191.
Liu, Z., Berg, D., Berg, D., Schauer, J., Tsai, C.-W., Chang, C.-T., … Su, J.-W. (2008). Sensitivity of Two Dispersion Models (AERMOD and ISCST3) to Input Parameters for a Rural Ground-Level Area Source. Journal of the Air & Waste Management Association, 58(10), 1288–1296.
Liu, Z., Qiu, J., Liu, H., Tan, Z., Yan, Z., Zhang, M., … Yang, H. (2012). Effects of SO2 and NO on removal of VOCs from simulated flue gas by using activated carbon fibers at low temperatures. Journal of Fuel Chemistry and Technology, 40(1), 93–99.
López-Martínez, A., & Keane, M. a. (2000). The gas phase hydrogenation of 2-butanone over supported nickel catalysts: Introduction of enantioselectivity. Journal of Molecular Catalysis A: Chemical, 153(1-2), 257–266.
Lu, M., Huang, M., & Lin, J. J. (2011). Emission Distribution of Volatile Organic, 1206–1211.
Manoj Kumar Reddy, P., Krushnamurty, K., & Subrahmanyam, C. (2014). Surface modification of carbon fabric for isopropanol removal from gas stream. Microelectronic Engineering, 126, 60–64.
Modelling, I. E., Meeting, F. B., Swayne, D. a, Yang, W., Voinov, a a, & Rizzoli, a. (2010). Evaluation of odour impact from a landfill area and a waste treatment facility through the application of two approaches of a Gaussian dispersion model. Environmental Engineering.
Ou, J., Zheng, J., Li, R., Huang, X., Zhong, Z., Zhong, L., & Lin, H. (2015). Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the pearl river delta region, China. Science of the Total Environment, 530-531(2), 393–402.
Ozturk, B., & Yilmaz, D. (2006). Absorptive Removal of Volatile Organic Compounds from Flue Gas Streams. Process Safety and Environmental Protection, 84(5), 391–398.
Park, S.-H., Shin, J.-A., Park, H.-H., Yi, G. Y., Chung, K.-J., Park, H.-D., … Lee, I.-S. (2011). Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories. Safety and Health at Work, 2011.
Ristic, B., Gunatilaka, A., & Gailis, R. (2014). Achievable accuracy in parameter estimation of a Gaussian plume dispersion model. IEEE Workshop on Statistical Signal Processing Proceedings, 209–212.
Saral, A., Demir, S., & Yildiz, Ş. (2009). Assessment of odorous VOCs released from a main MSW landfill site in Istanbul-Turkey via a modelling approach. Journal of Hazardous Materials, 168, 338–345.
Scaglia, B., Orzi, V., Artola, a., Font, X., Davoli, E., Sanchez, a., & Adani, F. (2011). Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability. Bioresource Technology, 102(7), 4638–4645.
Sironi, S., Capelli, L., Céntola, P., Del Rosso, R., & Pierucci, S. (2010). Odour impact assessment by means of dynamic olfactometry, dispersion modelling and social participation. Atmospheric Environment, 44(3), 354–360.
Taylor, P., Chein, H., & Chen, T. M. (2012). Emission Characteristics of Volatile Organic Compounds from Semiconductor Manufacturing Emission Characteristics of Volatile Organic Compounds from Semiconductor Manufacturing. Journal of the Air & Waste Management Association, (May 2013), 37–41.
Tu, L. K., Wu, Y. L., Wang, L. C., & Chang-Chien, G. P. (2012). Monitoring and dispersion modeling of polybrominated diphenyl ethers (PBDEs) in the ambient air of two municipal solid waste incinerators and a coal-fired power plant. Aerosol and Air Quality Research, 113–122.
United States Environmental Protection Agency (USEPA). (1995). User’s Guide for the Industrial Source Complex (ISC3) Dispersion Models. Report No. EPA-454/B-95-003b, 2(September), 1–128.
Wang, C. W., & Liang, C. (2014). Oxidative degradation of TMAH solution with UV persulfate activation. Chemical Engineering Journal, 254, 472–478.
Wang, L., Parker, D. B., Parnell, C. B., Lacey, R. E., & Shaw, B. W. (2006). Comparison of CALPUFF and ISCST3 models for predicting downwind odor and source emission rates. Atmospheric Environment, 40(25), 4663–4669.
Wei, W., Cheng, S., Li, G., Wang, G., & Wang, H. (2014). Characteristics of ozone and ozone precursors (VOCs and NOx) around a petroleum refinery in Beijing, China. Journal of Environmental Sciences, 26(2), 332–342.
Xu, J., Sheng, G. P., Ma, Y., Wang, L. F., & Yu, H. Q. (2013). Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system. Water Research, 47(14), 5298–5306.
Chein, H.M, Chen, T.M.,.(2003) “Emission Characteristics of Volatile Organic Compounds from Semiconductor Manufacturing,” Journal of The Air & Waste Management Association, 53(8), pp.1029-1036.
Wu, B.Z., Feng, T.Z., Sree, U., Chiu, K.H., Lo, H.G.(2006),” Sampling and Analysis of Volatile Organics Emitted from Wastewater Treatment Plant and Drain System of an Industrial Science Park,” Analytic Chimica Acta, 576, pp.100-111.
Chiang, C.F., Lai, J.S., (2010) Characterization of Volatile Organic Compounds in the Vicinity of an Optoelectronics Industrial Park in Taiwan,” Journal of The Air & Waste Management Association, 60(1), pp.55-62.
Tsai, J.H. , Huang, Y.S., Shieh, Z.X., Chiang, H.L., (2011) “Concentration Characteristics of VOCs and Acids/Bases in the Gas phase and Water-soluble Ions in the Particle Phase at an Electrical Industry Park During Construction and Mass Production,” Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 46(5), pp.540-551.
Lin, Y. C., Chang, F. T., Bai, H. and Pei, B. S., 2005. “Control of VOCs Emissions by Condenser Pre-treatment in a Semiconductor Fab”, J. Hazard. Mater., Vol. 120, pp. 9-14.
白曛綾,(2003),「操作績效自我評估管理制度手冊-酸鹼性氣體洗滌塔」,國立交通大學環境工程研究所。
江少祺,(2011),「半導體產業含氟溫室氣體排放係數建置之研究」,國立高雄 第一科技大學環境與安全衛生工程系,碩士論文。
江舟峰、蔡清讚、余雅芳、葉嘉宏、鄭榕真、蔡經綸,(2013),「空污事件管理決策支援系統之建立與測試-以台灣臺中市工業區異味陳情為例」,海峽兩岸研討會。
行政院環保署,(2014),「ISCST3 使用規範及技術文件」,1–64。
行院環境保護署,(2013),「固定污染源空氣污染物排放標準」,1–24。
吳靜怡,(2009),「含硫異味物質之化學及生物氧化」,國立中山大學環境工程研究所,碩士論文。
宋宗信,(2010),「以GC/MS偵測高科技工業區內空氣中揮發性有機物濃度之研究」,國立交通大學工學院永續環境科技學程,碩士論文。
宋隆佑,(2014),「空氣中異味物質之連續監測技術之開發」,工業技術研究院‧綠能與環境研究所。
林文川,(2009),「製程VOCs廢氣之收集與處理」, 工業污染防治第110期, (July), 105–173。
高苙凱,(2013),「以大氣擴散模式探討半導體業排放對區域性之影響 - 以中科三期后里園區為例」,國立中山大學環境工程研究所,碩士論文。
張瑞琪,(2010),「高科技產業高沸點製程廢氣調查技術研究」,國立交通大學 工學院產業安全與防災學程,碩士論文。
許菁珊,(2006),「沸石對於光電產業揮發性有機化合物之吸/脫附研究」,國立中山大學環境工程研究所,碩士論文。
陳佳伶,(2007),「石化工業區 VOCs 物種及排放量推估」,輔英科技大學環境工程與科學系,碩士論文。
陳幸吟,(2011),「台灣地區戴奧辛大氣濃度與沉降之空品模擬與長期觀測資料分析」,國立中央大學環境工程研究所,碩士論文。
陳玟妏,(2006),「高雄市臭味調查及改善」,國立中山大學環境工程研究所,碩士論文。
陳冠甫,(2011),「石化工業區鄰近區域環境中有害空氣污染物之調查」,輔英科技大學環境工程與科學系,碩士論文。
陳綺賢,(2012),「廢氣中低濃度二甲基硫之氯氣氧化串聯活性碳還原吸附」, 國立中山大學環境工程研究所,碩士論文。
費國偉,(2012),「以濕式洗滌法去除發光二極體產業含氨廢氣之效率探討」,國立中央大學環境工程研究所,碩士論文。
黃楷茗,(2007),「微波反應活性碳循環床處理半導體業排放異丙醇與丙酮廢氣之研究」,國立臺北科技大學環境規劃與管理研究所,碩士論文。
楊玉玲,(2009),「電子業揮發性有機物排放特性及其管理之研究」,國立台北科技大學環境工程與管理研究所,碩士論文。
楊奕德,(2010),「應用CALMET/CALPUFF模式解析南部地區氣流場及煙流傳輸特性之研究」,輔英科技大學環境工程與科學系,碩士論文。
葉書宏,(2010),「氧化洗滌技術於半導體封裝業有機廢氣處理控制-實廠運用之可行性研究」,國立中山大學海洋環境及工程學系,碩士論文。
廖琦峰,(2005),「工業區有害空氣污染物排放與影響評估方法之研究」,國立成功大學環境工程學系,碩士論文。
劉至中,(2012),「石化工業區空氣中揮發性有機物與含硫異味物質季節變化趨勢及污染源排放特徵之相關性分析」,國立中山大學環境工程研究所,碩士論文。
歐雅雯,(2005),「以 VOC 測站網探討中臺灣臭氧成因」,國立中央大學化學 研究所,碩士論文。
蔡勝雄,(2002),「空品區總量管制固定源SO2排放量與增量限值變異研究」,國立高雄第一科技大學,碩士論文。
鄭婷方,(2008),「中部科學園區周界揮發性有機物污染源貢獻分析」,朝陽科技大學環境工程與管理系,碩士論文。
盧彥勳,(2009),「大氣中微粒污染與重金屬成分之模擬與分析」,東海大學環境科學與工程系,碩士論文。
謝宏益.,(2013),「擴散模式ISC與AERMOD之比較」,國立中興大學環境工程研究所,碩士論文。
白曛綾,2002,“高科技工業空氣污染防制設施效能提升研析講義”,國立交通大學環境工程研究所。
中技社,財團法人中國技術服務社工業污染防治技術服務團,1999,「半導體業之環境管理建制及稽核要項」,環境管理輔導人員研習訓練教材第四冊-行業系統建制與稽核相關課程,第10-1~10-40頁。
行政院環保署,2002,「半導體製造業空氣污染物管制及排放標準」。
行政院環保署/國科會空污防制科研合作計畫,2012,「中科三、四期排放有害空氣汙染物調查及管制策略技術研究」。
張俊彥,1997,「積體電路製程及設備技術手冊」,行政院經濟部技術處。
陳宏瑜、楊家源、劉玉芬、劉佳鈞,2002,「高科技產業污染防制設備對總碳氫化合物削減率之評估」,工業污染防治季刊81期。
周明顯,2004,「光電半導體VOCs 處理成本分析及效益評估」,環保技術e報,第17期。
蘇月娥,(2010),「新竹科學園區空氣污染物排放總量管制策略之探討」,國立
中央大學環境工程研究所,碩士論文。
謝祝欽,(2006),「中部雲嘉南空品區臭氧污染成因調查研究分析」,環保署/國科會空污防制科研合作計畫。
羅沐恩,(2014),「光電業揮發性有機物在大氣中反應之研究」,國立屏東科技大學環境工程與科學系,碩士論文。
劉妙生,2002,「高科技電子業揮發性有機物污染管制理論與實務」,碩士論文,元智大學機械工程研究所。
劉沁瑋,2002,「新竹科學工業園區空氣污染物排放總量推估及ISCST3擴散模式應用」碩士論文,國立交通大學環境工程研究所。
劉家豪,2004,「IC製造業產品生命週期分析」,碩士論文,國立成功大學環境工程研究所。
蔡春進,2002,「力晶半導體股份有限公司煙道廢氣異味與白煙可能原因之研究計畫」期末報告,國立交通大學環境工程研究所。
蕭祥憲、曹繼中、陳孟裕、黃純星、吳家正、周志彥,2003,「半導體製造業及光電製造業揮發性有機物污染檢測及其污染物定性分析研究」,空氣污染控制技術研討會。
錢一心,2010,「TFT-LCD 產業揮發性有機物(VOCs)空氣污染防制設備旋轉蓄熱式燃燒爐(RRTO)效能提升研究」,碩士論文,朝陽科技大學環境工程與管理系。
簡弘民、陳姿名,2002,「新竹科學工業園區暨竹南基地空氣污染物排放總量監測及管理規劃」期末報告,新竹科學園區管理局。
羅卓卿,(2001),「油品儲運站鄰近空氣中揮發性有機污染物之特性研究」,國立中山大學環境工程研究所,碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code