Responsive image
博碩士論文 etd-0612116-110034 詳細資訊
Title page for etd-0612116-110034
論文名稱
Title
樟腦磺酸錯合物所得離子錯合物之聚集誘導放光
Complexation of Camphor Sulfonic Acid to form Ionic Complexes with Aggregation-Induce Emission
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-27
繳交日期
Date of Submission
2016-07-12
關鍵字
Keywords
樟腦磺酸、奎寧、聚集誘導放光、pH 值、羅丹胼、離子錯合物、金屬離子、牛血清蛋白、有機胺
bovine serum albumin(BSA), rhodamine hydrazide (RdH), Aggregation-induced emission(AIE), pHs, ionic complex, quinine (Qu), camphorsulfonic acid (CSA), metal
統計
Statistics
本論文已被瀏覽 5749 次,被下載 69
The thesis/dissertation has been browsed 5749 times, has been downloaded 69 times.
中文摘要
本實驗使用具有巨大分子結構之樟腦磺酸(camphor sulfonic acid, CSA)與奎寧( Quinine, Qu )形成錯合 物達到抑制分子內轉動 (restricted intramolecular rotation, RIR) 進而顯現聚集誘導放光效應(aggregation-induced emission ,AIE)。不發光的鹼性奎寧與兩當量的樟腦磺酸質子化形成具備 AIE性質的離子錯合物 Qu(CSA)2。 第二部分則選用羅丹胼(Rhodamine hydrazide,RdH)作為具 AIE 性質的螢光基團,其用不具放光羅丹胼的與樟腦磺酸形成離子錯合物 RdH (CSA)3。 樟腦磺酸除了使羅丹胼開環使放光增強,同時也可以增強對離子錯合物 RdH (CSA)X的 RIR 效應。而具有離子鍵的 Qu(CSA)2和 RdH(CSA)3同時對於數個外部的刺激具有反應,因此可以作為金屬離子、 有機胺、pH 值的螢光感測器。而藉由 Qu(CSA)2 和 RdH (CSA)3 對天然蛋白質牛血清白蛋白(BSA)導致鏈展開,此可做為 BSA 的生物感測器。
Abstract
Bulky camphorsulfonic acid (CSA) was used to complex with quinine (Qu) to impose the restricted intramolecular rotation (RIR) required for aggregation-induced emission (AIE) properties. After complexation with two equivalents of CSA, the
non-emissive quinine (Qu) base can be protonated to result in ionic complex Qu(CSA)2 with AIE properties. AIE-active rhodamine-based luminogen was prepared by complexation reaction between non-emissive rhodamine hydrazide (RdH) and bulky camphorsulfonic acid (CSA). Besides acting to open the spirolactam ring of RdH, CSA also imposes rotational restriction on the resultant ionic complex RdH(CSA)x. The ionic bonds of Qu(CSA)2 and RdH(CSA)3 are sensitive to several external stimuli and therefore, it is a luminescent sensor for metal ions, organic amines, pH value and the blood protein of bovine serum albumin (BSA); through the use of Qu(CSA)2 and RdH(CSA)3, the unfolding process of the BSA chains was evaluated.
目次 Table of Contents
Outline of contents
Chinese Abstract i
English Abstract ii
Outline of contents iii
List of Scheme vi
List of Figure vii

Chapter 1
Ionic Complex of Quinine and Camphor sulfonic Acid with Aggregation-Induce Emission
1. 1 Introduction 1
1. 1. 1 Fluorescence of quinine 1
1. 1. 2 Aggregation Induced Emission Phenomenon (AIE) 1
1. 1. 3 Fluorescence of protein 3
1. 1. 4 Ionic complex with Qu(CSA)2 4
1.2. Experimental sections 6
1.2.1 Materials 6
1.2.2 Instrumentations 7
1.3 Results and discussion 8
1.3.1 Emission behavior of Qu(CSA)x 9
1.3.2 Solution emission of Qu(CSA)x complexes 12
1.3.3 AIE property of Qu(CSA)2 13
1.3.4 NMR spectrum analysis 14
1.3.5 Emission variations at different pHs 17
1.3.6 Metal ions-driven emission variations 18
1.3.7 Bovine Serum Albumin-Driven emission variations 19
1.4. Conclusion 31
1.5. References 33
Chapter 2
Ionic complex of rhodamine dye with aggregation-induced emission property
2. 1 Introduction 40
2. 1. 1 Fluorescence of Rhodamine 40
2. 1. 2 Ionic complex with RdH(CSA)3 41
2.2. Experimental sections 42
2.2.1 Materials 42
2.2.2 Instrumentations 43
2.3 Results and discussion 44
2.3.1 Solution emission of RdH(CSA)x complexes 44
2.3.2 AIE property of RdH(CSA)3 46
2.3.3 NMR spectrum analysis 48
2.3.4 Metal ions-driven emission variations 51
2.3.5 RdH(CSA)3 as sensor for organic amines 52
2.3.6 Bovine Serum Albumin-Driven emission variations 54
2.4. Conclusion 61
2.5. References 62
Supporting Information 67
參考文獻 References
1.5. References
1. J. Achanl, A. O. Talisuna, A. Erhart, A. Yeka, J. K. Tibenderana, F. N. Baliraine, P. J. Rosenthal and U. D’Alessandro, Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria, Malaria Journal., 2011, 10, 144.
2. W. H. Melhuish, QUANTUM EFFICIENCIES OF FLUORESCENCE OF ORGANIC SUBSTANCES: EFFECT OF SOLVENT AND CONCENTRATION OF THE FLUORESCENT SOLUTE1, J. Phys. Chem., 1961, 65, 229.
3. J. E. Sabol and M. G. Rockley, Absolute fluorescence quantum yields by relative fluorescence and photoacoustic measurements of low level luminescence quenching, J. Photochem. Photobiol. A., 1987, 40, 245.
4. J. N. Demes and G. A. Graby, Measurement of photoluminescence quantum yields. Review, J. Phys. Chem., 1971, 75, 991.
5. W.H. Melhuish, A STANDARD FLUORESCENCE SPECTRUM FOR CALIBRATING SPECTRO-FLUOROPHOTOMETERS.; J. Phys. Chem., 1960,64,762.
6. S.G. Schulman, R.M. Threatte, A.C. Capomacchia, W.L. Poul., Fluorescence of 6-methoxyquinoline, quinine, and quinidine in aqueous media., J. Pharm. Sci., 1974, 63, 876
7. D.V. O’Connor, S.R. Meech, D. Phillips,; Complex fluorescence decay of quinine bisulphate in aqueous sulphuric acid solution,; Chem. Phys. Lett. 1982. 88. 22.
8. D.A. Barrow, B.R. Lentz, Luminescence of calcium halophosphate-Sb3+,Mn2+ at low temperatures., Chem. Phys. Lett., 1984, 104,161-162.
9. Barrow, D. A.; Lentz, B. R., Quinine as a fluorescence lifetime standard: Conditions for effectively homogeneous decay., Chem Phys Let., 1984, 104, 163-167.
10. Eisenbrand, J.; Raisch, M. Z. Anal Chem1961, 179, 352
11. Pringsheim, P. Fluorescence and Phosphorescence; In-terscience: New York, 1949; p 328.
12. Pant, D.; Tripathi, U. C.; Joshi, G. C.; Tripathi, H. B.; Pant, D. D, Photophysics of doubly-charged quinine: Steady state and time-dependent fluorescence, J Photochem Photobiol–A., 1990, 51, 313.
13. Babko, A. K.; Kostyshina, A. P. Ukr Khim Zh 1969, 35, 837.
14. Jonathan H. Gutow, Halide (Cl-) Quenching of Quinine Sulfate Fluorescence: A Time-Resolved Fluorescence Experiment for Physical Chemistry, J. Chem. Edu., 2005, 82, 2, 302-305.
15. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang , Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun., 2001, 1740–1741.
16. P. L. Nostro, J. R. Lopes and C. Cardelli, Formation of Cyclodextrin-Based Polypseudorotaxanes:  Solvent Effect and Kinetic Study, Langmuir., 2001, 17, 4610–4615.
17. Y. Hong, J.W.Y. Lam and B. Z. Tang, Aggregation-induced emission, Chem. Soc. Rev. 2011, 40, 5361–5388.
18. A.J. Qin, J.W.Y. Lam and B. Z. Tang, Luminogenic polymers with aggregation-induced emission characteristics, Prog. Polym. Sci., 2012, 37, 182–209.
19. J. Z. Liu, J. W. Y. Lam and B. Z. Tang, Aggregation-induced Emission of Silole Molecules and Polymers: Fundamental and Applications, J. Inorg. Organomet. Polym., 2009, 19, 249–285.
20. Y. Hong, J. W. Y. Lam and B. Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications, Chem. Commun., 2009, 4332–4353.
21. D.C. Carter, J.X. Ho, Structure of Serum Albumin, Adv. Protein Chem., 1994, 45, 153–203.
22. R.E. Olson, D.D. Christ, Chapter 33. Plasma Protein Binding of Drugs, Ann. Rep. Med. Chem., 1996, 31, 327– 337.
23. Y. Moriyama, D. Ohta, K. Hadiya, Y. Mitsui and K. Takeda, Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: A comparative study of the two and one tryptophan(s) of bovine and human albumins, J. Protein Chem., 1996, 15, 265–272.
24. A. Samanta, B. K. Paul, N. Guchhait, Novel proton transfer fluorescence probe 2-hydroxy-pyridine and 5-(4-fluorophenyl)-2-hydroxypyridine for studying native, denatured and renatured state of protein Bovine Serum Albumin, J. Photoch. Photobio. B., 2010, 101, 304–312.
25. G. Chen and M. Jiang, Cyclodextrin-based inclusion complexation bridging supramolecularchemistry and macromolecular self-assembly, Chem. Soc. Rev., 2011, 40, 2254–2266.
26. Y. Z. Zhang, B. Zhou, X. P. Zhang, P. Huang, C. H. Li and Y. Liu, Interaction of malachite green with bovine serum albumin: Determination of the binding mechanism and binding site by spectroscopic methods, J. Hazard. Mater., 2009, 163, 1345–1352.
27. M.R. Majidi, L.A.P. Kane-Maguire, G.G. Wallace, Enantioselective electropolymerization of aniline in the presence of (+)- or (−)-camphorsulfonate ion: a facile route to conducting polymers with preferred one-screw-sense helicity, Polymer., 1994, 35, 3113-3115.
28. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future, Adv. Mater., 2000,12,481-494.
29. A.P. Monkman, M. Halim, I.D.W. Samuel, L.E. Horburgh, Protonation effects on the photophysical properties of poly(2,5-pyridine diyl), J. Chem. Phys., 1998, 109, 10372-10378.
30. J.M. Hancock, S.A. Jenekhe, Unusual Protonation-Induced Continuous Tunability of Optical Properties and Electroluminescence of a π-Conjugated Heterocyclic Oligomer , Macromolecules., 2008, 41, 6864-6867.
31. J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970.
32. J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles, Chem. Mater., 2003, 15, 1535.
33. T. Lai, R. H. Chien, S. W. Kuo and J. L. Hong, etraphenylthiophene-Functionalized Poly(N-isopropylacrylamide): Probing LCST with Aggregation-Induced Emission, Macromolecules., 2011, 44, 6546-6556.
34. C. M. Yang, Y. W. Lai, S. W. Kuo and J. L. Hong, Complexation of Fluorescent Tetraphenylthiophene-Derived Ammonium Chloride to Poly(N-isopropylacrylamide) with Sulfonate Terminal: Aggregation-Induced Emission, Critical Micelle Concentration, and Lower Critical Solution Temperature, Langmuir., 2012, 28, 15725.
35. Y. Moriyama, D. Ohta, K. Hadiya, Y. Mitsui and K. J. Takeda, Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: A comparative study of the two and one tryptophan(s) of bovine and human albumins, J.Protein Chem., 1996, 15, 265-272.
36. X. M. He and D. C. Carter, Atomic structure and chemistry of human serum albumin, Nature., 1992, 358, 209-215.
37. Y. Z. Zhang, B. Zhou, X. P. Zhang, P. Huang, C. H. Li and Y. Liu, Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods, J. Hazard. Mater., 2009, 163, 1345-1352.
38. C. Tanford, K. Kawahara and S. Lapanje, Proteins as Random Coils. I. Intrinsic Viscosities and Sedimentation Coefficients in Concentrated Guanidine Hydrochloride, J. Amer. Chem. Soc., 1967, 89, 729-736.
39. J. C. Lee and S. N. Timasheff, Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride ,Biochemistry, 1974, 13, 257-265.
40. S. De, A. Girigoswami, S. Das, Fluorescence probing of albumin–surfactant interaction , J. Colloid. Interface Sci., 2005, 285, 562-273.
41. D. Kelley and D. J. McClements, Interactions of bovine serum albumin with ionic surfactants in aqueous solutions, Food Hydrocolloids., 2003, 17, 73-85.
42. S. L. Deng, T. S. Hsiao, K. Y. Shih and J. L. Hong, Protein quantitation by complexation of fluorescent tetraphenylthiophene cation to anion-terminated poly(N-isopropylacrylamide): Aggregation-enhanced emission and electrostatic interaction, J. Photochem. Photobio. B: Biology., 2014, 138, 134-140.
43. T. Singh, P. Bharmoria, M. Morikawa, N. Kimizuka and A. Kumar, Ionic Liquids Induced Structural Changes of Bovine Serum Albumin in Aqueous Media: A Detailed Physicochemical and Spectroscopic Study, J. Phys. Chem. B., 2012, 116, 11924-11935.
44. S. M. Yarmoluk, D. V. Kryvorotenko, A. O. Balanda, M. Y. Losytskyy and V. B. Kovalska, Proteins and cyanine dyes. Part III. Synthesis and spectroscopic studies of benzothiazolo-4-[1,2,6-trimethylpyridinium] monomethine cyanine dyes for fluorescent detection of bovine serum albumin in solutions, Dyes Pigm., 2001, 51, 41-49.
45. M. K. Santra, A. Banerjee, S. S. Krishnakumar, O. Rahaman and D. Panda, Multiple-probe analysis of folding and unfolding pathways of human serum albumin. Evidence for a framework mechanism of folding, Eur. J. Biochem., 2004, 271, 1789-1797.
46. R. B. Singh, S. Mahanta, A. Bagchi and N Guchhait, Interaction of human serum albumin with charge transfer probe ethyl ester of N,N-dimethylamino naphthyl acrylic acid: An extrinsic fluorescence probe for studying protein micro-environment, Photochem. Photobiol. Sci., 2009, 8, 101-110.
47. H. Jun, Y. H. Soo, S. Y. Seung, C. Kang and M. Suh, Fluorescent Hydrophobic Probes Based on Intramolecular Charge Transfer State for Sensitive Protein Detection in Solution , Chem. Lett., 2004, 33, 690-691.
48. S. Gorinstein, I. Goshev, S. Moncheva, M. Zemser, M. Weisz, A. Caspi, I. Libman, H. T. Lerner, S. Trakhtenberg and O. J. Martin-Belloso, Intrinsic tryptophan fluorescence of human serum proteins and related conformational changes, Protein Chem., 2000, 19, 637-642.
49. Y. Hong, C. Feng, Y. Yu, J. Liu, J. W. Y. Lam, K. Q. Luo and B. Z. Tang, Quantitation, Visualization, and Monitoring of Conformational Transitions of Human Serum Albumin by a Tetraphenylethene Derivative with Aggregation-Induced Emission Characteristics, Anal. Chem., 2010, 82, 7035-7043.
50. P. J. Rossky, Protein denaturation by urea: slash and bond, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 16825-16826.
2.5. References
1. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang , Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun., 2001, 1740–1741.
2. B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, Efficient blue emission from siloles, J. Mater. Chem., 2001, 11, 2974-2978.
3. Y. Hong, J. W. Y. Lam and B. Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications, Chem. Commun., 2009, 4332-4353.
4. D. Ding, K. Li, B. Liu and B. Z. Tang, Bioprobes Based on AIE Fluorogens, Acc. Chem. Res., 2013, 46, 2441-2453.
5. Z. Zhao, J. W. Y. Lam and B. Z. Tang, Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes, J. Mater. Chem., 2012, 22, 23726-23740.
6. M. Wang, G. Zhang, D. Zhang, D. Zhu and B. Z. Tang, Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature, J. Mater. Chem., 2010, 20, 1858-1867.
7. Z. Zhao, J. W. Y. Lam and B. Z. Tang, Self-assembly of organic luminophores with gelation-enhanced emission characteristics, Soft Matter, 2013, 9, 4564-4579.
8. J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang, Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts, Adv. Mater., 2014, 26, 5429-5479.
9. H. Wang, E. Zhao, J. W. Y. Lam and B. Z. Tang, AIE luminogens: emission brightened by aggregation, Mater. Today, 2015, 18, 365-377.
10. Z. Li, Y. Dong, B. Mi, Y. Tang, M. Häussler, H. Tong, Y. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sung, K. S. Wong, P. Gao, L. D. Williams, H. S. Kwok and B. Z. Tang, Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials, J. Phys. Chem. B., 2005, 109, 10061-10066.
11. J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles, Chem. Mater., 2003, 15, 1535-1546.
12. J. L. Hong, Chap. 13 Enhanced Emission by Restriction of Molecular Rotation, in Aggregation-Induced Emission: Fundamentals, ed. A. Qin and B. Z. Tang, John Wiley & Sons, Ltd, NY, 2013.
13. C. A. Chou, R. H. Chien, C. T. Lai, J. L. Hong, Complexation of bulky camphorsulfonic acid to enhance emission of organic and polymeric fluorophores with inherent quinoline moiety, Chem. Phy. Lett., 2010, 501, 80–86.
14. P. Y. Huang, J. Y. Gao, C. Y. Song and J. L. Hong, Multiple-responsive ionic complex luminogen of quinine and camphorsulfonic acid with aggregation-induced emission, RSC Adv., 2016, 6, 38201-38205.
15. M. Sameiro and T. Goncalves, Fluorescent Labeling of Biomolecules with Organic Probes, Chem. Rev., 2009, 109, 190-212.
16. M. C. Gutierrez, M. J. Hortiguela, M. L. Ferrer and F. delMonte, Highly Fluorescent Rhodamine B Nanoparticles Entrapped in Hybrid Glasses, Langmuir, 2007, 23, 2175-2179.
17. F. Stracke, M. Heupel and E. Thiel, Singlet molecular oxygen photosensitized by Rhodamine dyes: correlation with photophysical properties of the sensitizers, J. Photochem. Photobiol., A, 1999, 126, 51-58.
18. O. Valdes-Aguilera and D. C. Neckers, Aggregation phenomena in xanthene dyes, Acc. Chem. Res., 1989, 22, 171-177.
19. M. Faraggi, P. Peretz, I. Rosenthal and D. Weinraub, Solution properties of dye lasers. Rhodamine B in alcohols, Chem. Phys. Lett., 1984, 103, 310.
20. J. Bujdak and N. Iyi, Molecular Aggregation of Rhodamine Dyes in Dispersions of Layered Silicates:  Influence of Dye Molecular Structure and Silicate Properties, J. Phys. Chem. B, 2006, 110, 2180-2186.
21. R. Sasai, N. Iyi, T. Fujita, F. L. Arbeloa, V. M. Martinez, K. Takagi and H. Itoh, Luminescence Properties of Rhodamine 6G Intercalated in Surfactant/Clay Hybrid Thin Solid Films, Langmuir, 2004, 20, 4715-4719.
22. S. Dare-Doyen, D. Doizi, P. Guilbaud, F. Djedaini-Pilard, B. Perly and P. Millie, Dimerization of Xanthene Dyes in Water: Experimental Studies and Molecular Dynamic Simulations, J. Phys. Chem. B, 2003, 107, 13803-13812.
23. S. Kamino, Y. Horio, S. Komeda, K. Minoura, H. Ichikawa, J. Horigome, A. Tatsumi, S. Kaji, T. Yamaguchi, Y. Usami, S. Hirota, S. Enomoto, Y. Fujita, A new class of rhodamine luminophores: design, syntheses and aggregation-induced emission enhancement, Chem. Commun., 2010, 46 , 9013-9015.
24. V. B. Bojinov, A. I. Venkova, N. I. Georgiev, Synthesis and energy-transfer properties of fluorescence sensing bichromophoric system based on Rhodamine 6G and 1,8-naphthalimide, Sensors and Actuators B, 2009, 143, 42-49.
25. J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles, Chem. Mater., 2003, 15, 1535-1546.
26. C. T. Lai, R. H. Chien, S. W. Kuo and J. L. Hong, Tetraphenylthiophene-Functionalized Poly(N-isopropylacrylamide): Probing LCST with Aggregation-Induced Emission, Macromolecules, 2011, 44, 6546-6556.
27. C. M. Yang, Y. W. Lai, S. W. Kuo and J. L. Hong, Complexation of Fluorescent Tetraphenylthiophene-Derived Ammonium Chloride to Poly(N-isopropylacrylamide) with Sulfonate Terminal: Aggregation-Induced Emission, Critical Micelle Concentration, and Lower Critical Solution Temperature, Langmuir, 2012, 28, 15725.
28. Y. Z. Zhang, B. Zhou, X. P. Zhang, P. Huang, C. H. Li and Y. Liu, Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods, J. Hazard. Mater., 2009, 163, 1345-1352.
29. R. F. Greene, Jr., C. N. Pace, Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin., J. Biological Chem., 1974, 249, 5388-5393.
30. O. D. Monera, C. M. Kay, R. S. Hodges, Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions, Protein Sci., 1994, 3, 1984-1991.
31. S. M. Yarmoluk, D. V. Kryvorotenko, A. O. Balanda, M. Y. Losytskyy and V. B. Kovalska, Proteins and cyanine dyes. Part III. Synthesis and spectroscopic studies of benzothiazolo-4-[1,2,6-trimethylpyridinium] monomethine cyanine dyes for fluorescent detection of bovine serum albumin in solutions, Dyes Pigm., 2001, 51, 41-49.
32. M. K. Santra, A. Banerjee, S. S. Krishnakumar, O. Rahaman and D. Panda, Multiple-probe analysis of folding and unfolding pathways of human serum albumin. Evidence for a framework mechanism of folding, Eur. J. Biochem., 2004, 271, 1789-1797.
33. R. B. Singh, S. Mahanta, A. Bagchi and N. Guchhait, Interaction of human serum albumin with charge transfer probe ethyl ester of N,N-dimethylamino naphthyl acrylic acid: An extrinsic fluorescence probe for studying protein micro-environment, Photochem. Photobiol. Sci., 2009, 8, 101-110.
34. H. Jun, Y. H. Soo, S. Y. Seung, C. Kang and M. Suh, Fluorescent Hydrophobic Probes Based on Intramolecular Charge Transfer State for Sensitive Protein Detection in Solution, Chem. Lett, 2004, 33, 690-691.
35. S. Gorinstein, I. Goshev, S. Moncheva, M. Zemser, M. Weisz, A. Caspi, I. Libman, H. T. Lerner, S. Trakhtenberg and O. J. Martin-Belloso, Intrinsic tryptophan fluorescence of human serum proteins and related conformational changes, J. Protein. Chem., 2000, 19, 637-642.
36. Y. Hong, C. Feng, Y. Yu, J. Liu, J. W. Y. Lam, K. Q. Luo and B. Z. Tang, Quantitation, Visualization, and Monitoring of Conformational Transitions of Human Serum Albumin by a Tetraphenylethene Derivative with Aggregation-Induced Emission Characteristics, Anal. Chem., 2010, 82, 7035-7043.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code