Responsive image
博碩士論文 etd-0612116-122203 詳細資訊
Title page for etd-0612116-122203
論文名稱
Title
具羅丹明組成之有機及高分子發光體:金屬螯合、光致變色及發光行為
Organic and Polymeric luminogens containing rhodamine moiety: metal chelation, photochromism and emission behaviour.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-27
繳交日期
Date of Submission
2016-07-12
關鍵字
Keywords
金屬配體電荷轉移、光致變色、聚胜肽、螺內酰胺、二級結構、羅丹明、聚集誘導放光
secondary structure, rhodamine, metal ligand charge transfer, aggregation-induced emission, polypeptide, photochromic, siprorolactam
統計
Statistics
本論文已被瀏覽 5719 次,被下載 101
The thesis/dissertation has been browsed 5719 times, has been downloaded 101 times.
中文摘要
光致變色分子被廣泛應用於化學,物理學,生物学及材料科學。雖然一些光致變色系统已被開發,但其應用仍然受到複雜的合成,抗疲勞性低或不完整的光轉換等因素之限制。羅丹明染料具有如長波長吸收、高吸收系數,及高強度放光之開環結構等優良光學性質,為目前被高度研究之對象。在這項工作中,我們發現羅丹明乙酰肼(Rhodamine acetohydrozide, RdaH)金属錯合物於紫外線照射後行分子開環反應,導致其溶液螢光不同的變化。而此開環状態之金屬錯合物有超長之激發態壽命,並有良好的耐疲勞性。有趣的是,其錫金屬錯合物可維持長時間之強放光強度。通過使用不同的金属離子和溫度調節,我們可獲得其開環反應之活化能。利用循環伏安法(CV)我們亦可獲得金屬錯合物的最高占據分子軌域(HOMO)與最低未占分子軌域(LUMO)之能階。我們認為UV光促進金屬配位電荷轉移(metal ligand charge transfer, MLCT)的產生,從而誘發了羅丹明的放光機制。
另外,我們亦合成具有羅丹明肼衍生物之聚胜肽,首先,我們製備 (Rhodamine hydrazide, RdH),以其為起始劑進行環狀單體中之開環聚合,以得到具羅丹明酰肼螢光中心之聚谷胺酸(PPLG)。原本具螺內酰胺環之羅丹明酰肼起始劑不具發光特性,但實驗中我們發現環狀單體為有效之氫轉移劑,可導致羅丹明酰肼之開環,隨之進行開環聚合已得到具發光特性的聚谷胺酸(PPLG)。此具有羅丹明酰肼螢光中心之聚谷胺酸展現新穎的聚集誘導放光(aggregation-induced emission, AIE)現象,而聚胜肽的二級結構會影響螢光分子的聚集程度,從而展現不同之聚集誘導放光性。我們合成出低與高分子量的聚胜肽,其擁有不同比例的二級結構,故亦具受二級結構影響之聚集誘導放光性。另,此聚谷胺酸金屬錯合物亦如同小分子金屬錯合物,可在紫外光照射下產生長時間之顏色及螢光放光之可逆變化。
Abstract
Photochromic molecules are widely applied in chemistry, physics, biology, and materials science. Despite lots of photochromic systems have been developed, their applications are still limited regarding they generally involved complicated synthesis procedures, and the low fatigue resistance, or incomplete light conversion. Rhodamine is a class of dyes with excellent optical properties including long-wavelength absorption, large absorption coefficient, and high photostability in its ring-open form. In this work, rhodamine acetohydrazide (RdaH) metal complex was found to undergo intramolecular ring-open reactions upon UV irradiation, leading to fluorescence change in solution. Interestingly, the tin-chelated complex exhibited an extremely long lifetime in the photo-induced excited state. The activation energy of the complexes chelated to different metal ions was therefore accessed. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were also obtained through the use of cyclovoltammetry (CV). It was proposed that UV light promoted metal ligand charge transfer (MLCT) from the rhodamine moiety to metal ion, which considerably promoted the emission of the rhodamine moiety.
In addition, polypeptide containing a rhodamine center was also synthesized in this study. A rhodamine hydrazide (RdH) was served served as initiator to proceed ring-opening polymerization (ROP) of cyclic monomer to result in poly(γ-propargyl-L-glutamate) (PPLG) chain containing fluorescent Rd center. With the spirolactam ring, the RdH initiator is non-fluorescent but during the course of ROP the cyclic monomer acted as proton-transfer agent to catalyze the opening of the spirolactam ring of RdH, thus generating PPLG polypeptide containing an fluorescent rhodamine center. The rhodamine center of PPLG exhibits the novel aggregation-induced emission (AIE) behavior according to its solution emission response toward concentration and aggregation. Two PPLGs with low and high MWs were prepared and characterized to evaluate the influence of secondary structures of peptide chains on the resolved AIE-related emission behavior. Also, the PPLGs were found to complex with metal ions, rendering complexes with the MLCT property. Upon UV irradiation, the PPLG metal complex undergoes distinct color and fluorescence change. A similar reversible photochromism was also identified in PPLG metal complex.
目次 Table of Contents
Outline of contents
Chinese Abstract i
English Abstract iii
Outline of Contents v
List of Figure vii
List of Scheme xii
List of Table xiii
Chapter 1.
1-1. Introduction 1
1-2. Experimental 3
1-2-1. Materials 3
1-3. Characterization 4
1-4. Results and discussion 6
1-4-1. Complexes of RdaH with metal ions and the photochromism upon UV irradiation 6
1-4-2. Emission of R-M after UV Irradiation 8
1-4-3. Energy level of the complexes 10
1-5. Conclution 13
1-6. Figures 14
1-7. References 25
Chapter 2.
2-1. Introduction 30
2-2. Experimental 34
2-2-1. Materials 34
2-3. Characterization 37
2-4. Results and discussion 39
2-4-1. Ring-opening of RdH by blending with PLG-NCA and BLG-NCA 39
2-4-2. Amide structure of RdH-PPLG proved by RdaH 40
2-4-3. Synthesis of polymer of RdH-PPLG13 and RdH-PPLG23 43
2-4-4. Secondary structure of RdH-PPLG13 and RdH-PPLG23 45
2-4-5. Emissive property changing of RdH-PPLG13 and RdH-PPLG23 47
2-4-6. Metal chelation 49
2-5. Conclution 52
2-6. Figures 54
2-7. References 78
Supporting information 86
參考文獻 References
1-7. References
1. Kang-Kang Yu, Kun Li, Ji-Ting Hou, Jin Yang, Yong-Mei Xie and Xiao-Qi Yu, Rhodamine based pH-sensitive “intelligent” polymers as lysosome targeting probes and their imaging applications in vivo; Polym. Chem., 2014, 5, 5804.
2. U. Pischel, Chemical Approaches to Molecular Logic Elements for Addition and Subtraction; Angew. Chem., Int. Ed., 2007, 46, 4026.
3. M. Burnworth, S. J. Rowan and C., luorescent Sensors for the Detection of Chemical Warfare Agents; Weder, Chem.–Eur. J., 2007, 13, 7828.
4. Jong Seung Kim, Juyoung Yoon et al., A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions; Chemical Society Reviews, Volume 37, Number 8, August 2008, Pages 1453–1744.
5. R.W. Ramette and E. B. Sandell, J. Am., Rhodamine B Equilibria; Chem. Soc., 1956, 78, 4872.
6. Raymo, F. M.; Tomasulo, M., Electron and energy transfer modulation with photochromic switches; Chem. Soc. Rev. 2005, 34, 327.
7. Yildiz, I.; Deniz, E.; Raymo, F. M., Fluorescence modulation with photochromic switches in nanostructured constructs; Chem. Soc. Rev. 2009, 38, 1859.
8. Dong, H.; Zhu, H.; Meng, Q.; Gong, X.; Hu, W., Organic photoresponse materials and devices; Chem. Soc. Rev. 2012, 41, 1754.
9. Cui, J.; Gropeanu, R. A.; Stevens, D. R.; Rettig, J.; Campo, A. J., New Photolabile BAPTA-Based Ca2+ Cages with Improved Photorelease; Am. Chem. Soc. 2012, 134, 7733.
10. Natali, M.; Giordani, S., Molecular switches as photocontrollable “smart” receptors; Chem. Soc. Rev. 2012, 41, 4010.
11. Tong, R.; Hemmati, H. D.; Langer, R.; Kohane, D. S. J., Photoswitchable Nanoparticles for Triggered Tissue Penetration and Drug Delivery; Am. Chem. Soc. 2012, 134, 8848.
12. Vantomme, G.; Lehn, J. M., Photo- and Thermoresponsive Supramolecular Assemblies: Reversible Photorelease of K+ Ions and Constitutional Dynamics; Angew. Chem., Int. Ed. 2013, 125, 4032
13. Blanco-Lomas, M.; Samanta, S.; Campos, P. J.; Woolley, G. A.; Sampedro, D. J. Am., Reversible Photocontrol of Peptide Conformation with a Rhodopsin-like Photoswitch; Chem. Soc. 2012, 134, 6960.
14. Szymanski, W.; Beierle, J. M.; Kistemaker, H. A.; Velema, W. A.; Feringa, B. L., Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches; Chem. Rev. 2013, 113, 6114.
15. Zhang, J.; Zou, Q.; Tian, H., Photochromic Materials: More Than Meets The Eye; Adv. Mater. 2013, 25, 378.
16. Natali, M.; Giordani, S., Molecular switches as photocontrollable ‘‘smart’’ receptors; Chem. Soc. Rev. 2012, 41, 4010.
17. C. Bignozzi, R. Argazzi, R. Boaretto, E. Busatto, S. Carli, F. Ronconi, S. Caramori, The role of transition metal complexes in dye sensitized solar devices, Coordination Chemistry Reviews, 257 (2013) ,1472-1492.
18. A.S. Polo, M.K. Itokazu, N.Y. Murakami Iha, Metal complex sensitizers in dye-sensitized solar cells, Coordination Chemistry Reviews, 248 (2004) ,1343-1361.
19. M. Fischer, J. Georges, Use of thermal lens spectrometry for the investigation of dimerization equilibria of rhodamine 6G in water and aqueous micellar solutions; Spectrochimica Acta Part A, 53 (1997), 1419–1430.
20. Knauer, K. H.; Gleiter, R., Photochromie von Rhodaminderivaten; Angew. Chem. 1977, 89, 116.
21. Willwohl, H.; Wolfrum, J.; Gleiter, R., KINETICS AND MECHANISM OF THE PHOTOCHROMISM OF N-PHENYL-RHODAMINELACTAME, Laser Chem. 1989, 10, 63.
22. Fölling, J.; Belov, V.; Kunetsky, R.; Medda, R.; Schönle, A.; Egner, A.; Eggeling, C.; Bossi, M.; Hell, S. E. W., Photochromic Rhodamines Provide Nanoscopy with Optical Sectioning; Angew. Chem., Int. Ed. 2007, 46, 6266.
23. Belov, V. N.; Bossi, M. L.; Fölling, J.; Boyarskiy, V. P.; Hell, S. W., Rhodamine Spiroamides for Multicolor Single-Molecule Switching Fluorescent Nanoscopy ;Chem.Eur. J. 2009, 15, 10762.
24. Wu, L.; Dai, Y.; Marriott, G., Optical Control of Calcium Affinity in a Spiroamido-rhodamine Based Calcium Chelator; Org. Lett. 2011, 13, 2018.
25. Schäfer, C. G.; Gallei, M.; Zahn, J.; Engelhardt, J.; Hellmann, G. P.; Rehahn, M., Reversible Light-, Thermo-, and Mechano-Responsive Elastomeric Polymer Opal Films; Chem. Mater. 2013, 25, 2309.
26. Kai Li, Yu Xiang, Xiaoyan Wang, Ji Li, Rongrong Hu, Aijun Tong and Ben Zhong Tang. Reversible Photochromic System Based on Rhodamine B Salicylaldehyde Hydrazone Metal Complex; JACS, 2014, 136, 1643−1649.
27. Jana Vichovl, Frantikk Hartl, and Antodn VlZek, Jr., Wavelength- Dependent Photosubstitution and Excited-state Dynamics of [ Cr(CO)4(2,2'-bipyridine)]: A Quantum Yield and Picosecond Absorption Study; J. Am. Chem. SOC. 1992, 114, 10903-10910.
28. Langford, C. H. Acc. Chem. Res. 1984, 17, 96.
29. Langford, C. H.; Moralejo, C. In Photoinduced Electron Transfer; Fox, M. A., Chanon, M., Eds.; Elsevier: Amsterdam, 1988; Vol. 2, p 420.
30. Lees, A. J. Chem. Rev. 1987, 87, 711.
31. Jeppe Madsen, Nicholas J. Warren, and Steven P. Armes, Synthesis of Rhodamine 6G-Based Compounds for the ATRP Synthesis of Fluorescently Labeled; Biocompatible Polymers Biomacromolecules, 2011, 12, 2225–2234
32. Shincheol Kang, Sungwook Kim, Young-Keun Yang, Shinhyo Bae, Jinsung Tae, Fluorescent and colorimetric detection of acid vapors by using solid-supported rhodamine hydrazides; Elsevier, Tetrahedron Letters, 50 (2009), 2010–2012
33. Harsasi Setyawati, Handoko Darmokoesoemo, Hamami, Faidur Rochman, Ahmadi Jaya Permana. Promising Dye Sensitizer on Solar Cell From Complexes of Metal and Rhodamine B; IJRER, Harsasi Setyawati et al., Vol.5, No.3, 2015
34. D.P. West, M.D. Rahn , C. Im , H. Ba¨ssler, Hole transport through chromophores in a photorefractive polymer composite based on poly_N-vinylcarbazole; Elsevier, Chemical Physics Letters, 326, 2000, 407–412.
35. Weichun Ye, Junfeng Yan, Qian Ye, and Feng Zhou, Template-Free and Direct Electrochemical Deposition of Hierarchical Dendritic Gold Microstructures: Growth and Their Multiple Applications; J. Phys. Chem. C, 2010, 114, 15617–15624.
2-7. References
1. J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole; Chem. Commun., 2001, 1740–1741.
2. B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, Efficient blue emission from siloles; J. Mater. Chem., 2001, 11, 2974–2978.
3. Y. Hong, J. W. Y. Lam and B. Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications; Chem. Commun., 2009, 4332–4353.
4. D. Ding, K. Li, B. Liu and B. Z. Tang, Bioprobes Based on AIE Fluorogens; Acc. Chem. Res., 2013, 46, 2441–2453.
5. Z. Zhao, J. W. Y. Lam and B. Z. Tang, Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes; J. Mater. Chem., 2012, 22, 23726–23740.
6. M. Wang, G. Zhang, D. Zhang, D. Zhu and B. Z. Tang, Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature; J. Mater. Chem., 2010, 20, 1858–1867.
7. Z. Zhao, J. W. Y. Lam and B. Z. Tang, Self-assembly of organic luminophores with gelation-enhanced emission characteristics; Soft Matter, 2013, 9, 4564–4579.
8. Aggregation-Induced Emission: Fundamentals, ed. A. Qin, and B. Z. Tang, John Wiley & Sons, Ltd, NY, 2013.
9. J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang, Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts; Adv. Mater., 2014, 26, 5429–5479.
10. Z. Li, Y. Dong, B. Mi, Y. Tang, M. Häussler, H. Tong, Y. Dong, J. W. Y. Lam, Y. Ren, H. H. Y. Sung, K. S. Wong, P. Gao, I. D. Williams, H. S. Kwok and B. Z. Tang, Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials; J. Phys. Chem. B, 2005, 109, 10061–10066.
11. J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles; Chem. Mater., 2003, 15, 1535–1546.
12. Z. Zhao, C. Y. K. Chan, S. Chen, C. Deng, J. W. Y. Lam , C. K. W. Jim, Y. Hong, P. Lu, Z. Chang, X. Chen, P. Lu, H. S. Kwok, H. Qiu, B. Z. Tang, Using tetraphenylethene and carbazole to create efficient luminophores with aggregation-induced emission, high thermal stability, and good hole-transporting property; J. Mater. Chem., 2012, 22, 4527–4534.
13. J. Huang, X. Yang, J. Wang, C. Zhong, L. Wang, J. Qin, Z. Li, New tetraphenylethene-based efficient blue luminophors: aggregation induced emission and partially controllable emitting color; J. Mater. Chem., 2012, 22, 2478–2484.
14. J. Huang, N. Sun, J. Yang, R. Tang, Q. Li, D. Ma, J. Qin, Z. Li, Benzene-cored fluorophors with TPE peripheries: facile synthesis, crystallization-induced blue-shifted emission, and efficient blue luminogens for non-doped OLEDs; J. Mater. Chem., 2012 , 22 , 12001–12007 .
15. J. Huang, N. Sun, Y. Dong, R. Tang, P. Lu, P. Cai, Q. Li, D. Ma , D. Qin, Z. Li, Similar or Totally Different: The Control of Conjugation Degree through Minor Structural Modifications, and Deep-Blue Aggregation-Induced Emission Luminogens for Non-Doped OLEDs; Adv. Funct. Mater., 2013, 23, 2329–2337.
16. X. Chen, X. Y. Shen, E. Guan, Y. Liu, A. Qin, J. Z. Sun, B. Z. Tang, A pyridinyl-functionalized tetraphenylethylene fluorogen for specific sensing of trivalent cations; Chem. Commun., 2013, 49, 1503–1505.
17. X. Wang, J. Hu, T. Liu, G. Zhang, S. Liu, Highly sensitive and selective fluorometric off–on K+ probe constructed via host–guest molecular recognition and aggregation-induced emission; J. Mater. Chem., 2012, 22, 8622–8628.
18. X. Huang, X. Gu, G. Zhang, D. Zhang, Chem. Commun., 2012, 48, 12195–12197.
19. S. Sugihara, S. Kanaoka and S. Aoshima, Double Thermosensitive Diblock Copolymers of Vinyl Ethers with Pendant Oxyethylene Groups:  Unique Physical Gelation; Macromolecules, 2005, 38, 1919–1927.
20. Rajeswara Rao M, C.W. Liao, W. L. Su and S. S. Sun, Quinoxaline based D–A–D molecules: high contrast reversible solid-state mechano- and thermo-responsive fluorescent materials; J. Mater. Chem. C, 2013, 1, 5491.
21. K. H. Drexhage, J. Res. Natl. Bur. Stand., Fluorescence efficiency of laser dyes,1976, 80A, 421–428.
22. K. H. Drexhage, Laser Focus, 1973, 9, 35–39.
23. J. N. Demas and G. A. Crosby, Measurement of photoluminescence quantum yields. Review; J. Phys. Chem., 1971, 75, 991–1024.
24. T. J. V. Prazeres, A. Fedorov, S. P. Barbosa, J. M. G. Martinho and M. N. Berberan-Santos, Accurate Determination of the Limiting Anisotropy of Rhodamine 101. Implications for Its Use as a Fluorescence Polarization Standard; J. Phys. Chem. A, 2008, 112, 5034–5039.
25. J. P. S. Farinha, M. T. Charreyre, J. M. G. Martinho, M. A. Winnik and C. Pichot, Picosecond Fluorescence Studies of the Surface Morphology of Charged Polystyrene Latex Particles; Langmuir, 2001, 17, 2617–2623.
26. T. Fonseca, P. Relo´ gio, J. M. G. Martinho and J. P. S. Farinha, Preparation and Surface Characterization of Polymer Nanoparticles Designed for Incorporation into Hybrid Materials; Langmuir, 2007, 23, 5727–5734.
27. S. T. Bogen, J. Karolin, J. G. Molotkovsky and L. B. A. Johansson, 1,32-Dihydroxy-dotriacontane-bis(Rhodamine) 101 ester A lipid membrane spanning bichromophoric molecule as revealed by intramolecular donor–donor energy migration (DDEM); J. Chem. Soc., Faraday Trans., 1998, 94, 2435–2440.
28. J. Nicolas, V. San Miguel, G. Mantovani and D. M. Haddleton, Fluorescently tagged polymer bioconjugates from protein derived macroinitiators; Chem. Commun., 2006, 4697–4699.
29. T. J. V. Prazeres, A. Fedorov and J. M. G. Martinho, Dynamics of Oligonucleotides Adsorbed on Thermosensitive Core-Shell Latex Particles; J. Phys. Chem. B, 2004, 108, 9032–9041.
30. T. J. V. Prazeres, A. M. Santos and J. M. G. Martinho, Adsorption of Oligonucleotides on PMMA/PNIPAM Core-Shell Latexes: Polarity of the PNIPAM Shell Probed by Fluorescence; Langmuir, 2004, 20, 6834–6840.
31. E. L. Quitevis, A. H. Marcus and M. D. Fayer, Dynamics of ionic lipophilic probes in micelles: picosecond fluorescence depolarization measurements; J. Phys. Chem., 1993, 97, 5762–5769.
32. L. Li, X. Z. Tian, G. Z. Zou, Z. K. Shi, X. L. Zhang and W. R. Jin, Quantitative Counting of Single Fluorescent Molecules by Combined Electrochemical Adsorption Accumulation and Total Internal Reflection Fluorescence Microscopy; Anal. Chem., 2008, 80, 3999–4006.
33. M. Bossi, J. Folling, V. N. Belov, V. P. Boyarskiy, R. Medda, A. Egner, C. Eggeling, A. Schonle and S. W. Hell, Multicolor Far-Field Fluorescence Nanoscopy through Isolated Detection of Distinct Molecular Species; Nano Lett., 2008, 8, 2463–2468.
34. Z. G. Zhou, M. X. Yu, H. Yang, K. W. Huang, F. Y. Li, T. Yi and C. H. Huang, FRET-based sensor for imaging chromium(III) in living cells; Chem. Commun., 2008, 3387–3389.
35. W. Liu, M. Howarth, A. B. Greytak, Y. Zheng, D. G. Nocera, A. Y. Ting and M. G. Bawendi, J. Am. Compact biocompatible quantum dots functionalized for cellular imaging; Chem. Soc., 2008, 130, 1274–1284.
36. C. Hara, K. Tateyama, N. Akamatsu, H. Imabayashi, K. Karaki, N. Nomura, H. Okano and A. Miyawaki, A practical device for pinpoint delivery of molecules into multiple neurons in culture; Brain Cell Biology, 2006, 35, 229–237.
37. Kang-Kang Yu, Kun Li, Ji-Ting Hou, Jin Yang, Yong-Mei Xie and Xiao-Qi Yu, Rhodamine based pH-sensitive “intelligent” polymers as lysosome targeting probes and their imaging applications in vivo; Polym. Chem., 2014, 5, 5804
38. K. Y. Shih, T. S. Hsiao, S. L. Deng, and J. L. Hong, Water-Soluble Poly(γ-propargyl-L-glutamate) Containing Pendant Sulfonate Ions and Terminal Fluorophore: Aggregation-Enhanced Emission and Secondary Structure; Macromolecules, 2014, 47, 4037–4047.
39. C. T. Lai, R. H. Chien, S. W. Kuo, and J. L. Hong, Tetraphenylthiophene-Functionalized Poly(N-isopropylacrylamide): Probing LCST with Aggregation-Induced Emission; Macromolecules, 2011, 44, 6546–6556.
40. R. H. Chien, C. T. Lai, and J. L. Hong, Hydrogen Bonds and Enhanced Aggregation Emission of Organic and Polymeric Fluorophores with Alternative Fluorene and Naphthol Units; J. Phys. Chem. C., 2011, 115, 12358–12366.
41. R. H. Chien, C. T. Lai, and J. L. Hong, Enhanced Aggregation Emission of Vinyl Polymer Containing Tetraphenylthiophene Pendant Group; J. Phys. Chem. C., 2011, 115, 5958–5965.
42. S. T. Li, Y. C. Lin, S. W. Kuo, W. T. Chuang and J. L. Hong, Aggregation induced emission enhancement in relation to secondary structures of poly(γ-benzyl-L-glutamate) containing fluorescent tetraphenylthiophene function; Polym. Chem., 2012, 3, 2393–2402.
43. C. M. Yang, Y. W. Lai, S. W. Kuo, and J. L. Hong, Complexation of Fluorescent Tetraphenylthiophene-Derived Ammonium Chloride to Poly(N-isopropylacrylamide) with Sulfonate Terminal: Aggregation-Induced Emission, Critical Micelle Concentration, and Lower Critical Solution Temperature; Langmuir, 2012, 28, 15725–15735.
44. L. Deng, T.S. Hsiao, K.Y. Shih, J. L. Hong, Protein quantitation by complexation of fluorescent tetraphenylthiophene cation to anion-terminated poly(N-isopropylacrylamide): Aggregation-enhanced emission and electrostatic interaction; J. Photochem. Photobiol. B., 2014, 138, 134–140.
45. S. L. Deng, T.L. Chen, W. L. Chien and J. L. Hong, Aggregation-enhanced emission in fluorophores containing pyridine and triphenylamine terminals: restricted molecular rotation and hydrogen-bond interaction; J. Mater. Chem. C, 2014, 2, 651–659.
46. L. Y. Lin, P. C. Huang, D. J. Yang, J. Y. Gao and J. L. Hong, Influence of the secondary structure on the AIE-related emission behavior of an amphiphilic polypeptide containing a hydrophobic fluorescent terminal and hydrophilic pendant groups; Polym. Chem., 2015, Advance Article.
47. Y. C. Lin, S. W. Kuo, Synthesis, self-assembly and secondary structures of linear polypeptides graft to polyhedral oligomeric silsesqu ioxane in the side chain through click chemistry; Polym. Chem., 2012, 3, 162–171.
48. Y. C. Lin, S. W. Kuo, Hierarchical self-assembly structures of POSS-containing polypeptide block copolymers synthesized using a combination of ATRP, ROP and click chemistry; Polym. Chem., 2012, 3, 882–891.
49. Zhang, Y.; Lu, H.; Lin, Y.; Cheng, J, Water-Soluble Polypeptides with Elongated, Charged Side Chains Adopt Ultrastable Helical Conformations; Macromolecules, 2011, 44, 6641 − 6644.
50. H. B. Du, R. N. Wickramasinghe, and X. H. Qian, Effects of Salt on the Lower Critical Solution Temperature of Poly (N-Isopropylacrylamide); J. Phys. Chem. B., 2010, 114, 16594–16604
51. S. Kang, S. Kim, Y. K Yang, S. Bae, J. Tae, Fluorescent and colorimetric detection of acid vapors by using solid-supported rhodamine hydrazides; Tetrahedron Letters, 50 (2009), 2010–2012
52. Jeppe Madsen, Nicholas J. Warren, and Steven P. Armes, Synthesis of Rhodamine 6G-Based Compounds for the ATRP Synthesis of Fluorescently Labeled; Biocompatible Polymers Biomacromolecules, 2011, 12, 2225–2234
53. Aichun Dong, Ping Huang, and Winslow S . Caughey, Protein Secondary Structures in Water from Second-Derivative Amide I Infrared Spectra, Biochemistry 1990, 29, 3303-3308.
54. Jungyeon Hwang and Timothy J. Deming, Methylated Mono- and Di(ethylene glycol)-Functionalized β-Sheet Forming Polypeptides; Biomacromolecules, 2001, 2, 17-21
55. P. Papadopoulous, G. Floudas, H. A. Klok, I. Schnell, T. Pakula, Self-Assembly and Dynamics of Poly(γ-benzyl-l-glutamate) Peptides; Biomacromolecules, 2004, 5, 81.
56. N. H. Anderse, Z. Liu, K. S. Prickett, fforts toward deriving the CD spectrum of a 310 helix in aqueous medium; FEBS Letters, 399 (1996), 47-52
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code