Responsive image
博碩士論文 etd-0612116-124658 詳細資訊
Title page for etd-0612116-124658
論文名稱
Title
具單一螢光基之聚乳酸:立體錯合物及靜電紡絲奈米纖維
Polylactides with a fluorecscent unit : stereocomplex and electrospun nanofibers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-27
繳交日期
Date of Submission
2016-07-12
關鍵字
Keywords
聚乳酸、聚集誘導發光、立體錯合物、靜電紡絲、羅丹明胼
stereocomplex, Electrospinning, rhodamine hydride, AIEgens, Polylactide
統計
Statistics
本論文已被瀏覽 5688 次,被下載 39
The thesis/dissertation has been browsed 5688 times, has been downloaded 39 times.
中文摘要
結晶的聚乳酸能有效地增強鄰近具有聚集誘導發光分子內限制轉動的能力,進而提高發光的效率。聚集誘導四苯基噻酚尾端基之聚乳酸立體錯合物具有結晶增強發光的性質。聚乳酸的放光主要為單體放光,其立體錯合物則有單體放光和激發二聚物放光。對於聚乳酸而言,熱退火可以增強單體放光,而熱退火對於其立體錯合物可以將單體放光轉換為很強的二聚物放光。在任何情況下,立體錯合物緊密堆積的晶體結構發光效率更高。
靜電紡絲技術可以簡易製備許多種類的高分子奈米纖維。羅丹明胼聚乳酸的奈米纖維藉由開環聚合左旋-丙交酯合成三臂高分子並且對酸鹼和錫金屬離子有高選擇性。奈米纖維在酸鹼值為 2 或12時有開/關特性。
Abstract
Crystalline polylactide chains are efficient in imposing restricted intramolecular rotation on neighboring luminogens active in aggregation-induced emission (AIE) property, thereby increasing emission efficiency of the AIE-active luminogens (AIEgens). This crystallization-promoted emission enhancement (CPEE) behavior was demonstrated in the L- and D-polylactides (as TP-PLLA and TP-PDLA) terminated with an AIEgenic tetraphenylthiophene (TP) and in the stereocomplex (SC-PLA) from the stoichiometric mixture of TP-PLLA and TP-PDLA. Homopolylactides of TP-PLLA and TP-PDLA emit mainly with the monomer emission, in contrast, SC-PLA emits with both monomer and excimer emissions. Thermal annealing acted to enhance monomer emission of TP-PLLA and TP-PDLA but for the complex SC-PLA, thermal annealing converted the monomer emission into a large excimer emission. In any case, the intimately-packed crystalline structure of SC-PLA contributes to its high emission efficiency compared to the constituent TP-PLLA and TP-PDLA.
Electrospinning technique can process many kinds of continuous polymer fiber and it is very easy for process. Electrospun of rhodamine hydride PLA nanofiber was synthesized three armed polymer by ring opening polymerization of D-lactide and was highly selective for pH and tin ion. Nanofiber performances turn on/off properties in the condition of pH=2 or pH=12.
目次 Table of Contents
Outline of contents
Vertification letter from the Oral Examination Committee……………………………..i
Chinese Abstract.............................................…………………………………......…..ii
English Abstract...................................................………………………………….....iii
Outline of Contents...…………………….....………....………....…………....….…....v
List of Figure……………………………………………………………...…....….....vii
List of Scheme............................................................................................…..….........ix
List of Table...................................................................................................................ix
List of Supporting information…………………………………………………..…….x
1-1. Introduction……………………………...………………………………………..2
1-2. Experimental section……………………………...................................................6
1-3. Instrumentations………………………..................................................................8
1-4. Results and discussion……...................................................................................10
1-5. Conclusion…………………………………………………………………….…20
1-6. References …........................................................................................................29
1-7. Supporting information………………………………………………………….33
2-1. Introduction……………………………………………………………………...43
2-2. Experimental section…………………………………………………………….47
2-3. Instrumentations…………………………………………………………………50
2-4. Results and discussion……….……………………………….…….……………51
2-5. Conclusion…………………………………………………………………….…57
2-6. References …........................................................................................................70
2-7. Supporting information………………………………………………………….76
參考文獻 References
CH1
(1) J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, S. Kwok, X. Zhan, Y. Liu, D. Zhu and B. Z. Tang, Chem. Commun., 2001, 1740–1741.
(2) B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, J. Mater. Chem., 2001, 11, 297–2978.
(3) Y. Hong, J. W. Y. Lam and B. Z. Tang, Chem. Commun., 2009, 4332–4353.
(4) D. Ding, K. Li, B. Liu and B. Z. Tang, Acc. Chem. Res., 2013, 46, 2441–2453.
(5) Z. Zhao, J. W. Y. Lam and B. Z. Tang, J. Mater. Chem., 2012, 22, 23726–23740.
(6) M. Wang, G. Zhang, D. Zhang, D. Zhu and B. Z. Tang, J. Mater. Chem., 2010, 20, 1858–1867.
(7) Z. Zhao, J. W. Y. Lam and B. Z. Tang, Soft Matter, 2013, 9, 4564–4570.
(8) Aggregation-Induced Emission: Fundamentals, ed. A. Qin and B. Z. Tang, John Wiley & Sons, Ltd, NY, 2013.
(9) J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang and B. Z. Tang, Adv. Mater., 2014, 26, 5429–5479.
(10) H. Wang, E. Zhao, J. W. Y. Lam and B. Z. Tang, MaterialToday, 2015, 18, 365–377.
(11) J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, and B. Z. Tang, Chem. Rev., 2015, 115, 11718–11940.
(12) Y. Dong, J. W. Y. Lam, A. Qin, J. Sun, J. Liu, Z. Li, J. Sun, H. H. Y. Sung, I. D. Williams, H. S. Kwok and B. Z. Tang, Chem. Commun., 2007, 3255–3257.
(13) H. Tong, Y. Dong, H. Häussler, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, J. Sun and B. Z. Tang, Chem. Commun., 2006, 1133–1135.
(14) Y. Dong, J. W. Y. Lam, A. Qin, Z. Li, J. Sun, H. H. Y. Sung, I. D. Williams and B. Z. Tang, Chem. Commun., 2007, 40 –42.
(15) H. Tong, Y. Dong, Y. Hong, H. Häussler, J. W. Y. Lam, H. H. Y. Sung, X. Yu, J. Sun, I. D. Williams, H. S. Kwok and B. Z. Tang, J. Phys. Chem. C, 2007, 111, 2287–2294.
(16) L. Qian, B. Tong, J. Shen, J. Shi, J. Zhi, Y. Dong, F. Yang, Y. Dong, J. W. Y. Lam, Y. Liu and B. Z. J. Tang, J. Phys. Chem. B, 2009, 113, 9098 – 9103.
(17) W. L. Chien, C. M. Yang, T. L. Chen, S. T. Li and J. L. Hong, RSC Adv., 2013, 3, 6930–6938.
(18) Y. Ikada and H. Tsuji, Macromol. Rapid Commun., 2000, 21, 117–132.
(19) P. De Santis and P. J. Kovacs, Biopolymers, 1968, 6, 299–306.
(20) J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan and Y. Ozaki, Macromolecules, 2005, 38, 8012–8021.
(21) B. Kalb and A. J. Pennings, Polymer, 1980, 21, 607–612.
(22) J. Puiggali, Y. Ikada, H. Tsuji, L. Cartier, T. Okinara and B. Lotz, Polymer, 2000, 41, 8921–8930.
(23) L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali and B. Lotz, Polymer, 2000, 41, 8909–8919.
(24) W. Hoogsteen, A. R. Postema, A. J. Pennings, G. ten Brinke and P. Zugenmaier, Macromolecules, 1990, 23, 634–642.
(25) J. Zhang, K. Tashiro, H. Tsuji and A. J. Domb, Macromolecules, 2008, 41, 1352–1357.
(26) Y. Li, C. Hana, Y. Bian, Q. Dong, H. Zhao, X. Zhang, M. Xu and L. Don, Thermochim. Acta, 2014, 580, 53–62.
(27) T. S. Hsiao, P. C. Huang, L. Y. Lin, D. J. Yang and J. L. Hong, Polym. Chem., 2015, 6, 2264–2273.
(28) Hideto Tsuji, Macromol. Biosci., 2005, 5, 569–597
(29) J. Zhang, K. Tashiro, H. Tsuji and A. J. Domb, Macromolecules, 2007, 40, 1049–1054.
(30) T. Okihara, M. Tsuji, A. Kawaguchi, K. Katayama, H. Tsuji, S. H. Hyon, Y. Ikada, J. Macromol. Sci., -Phys., 1991, B30, 119–140.
(31) Y. Ikada, K. Jamshidi, H. Tsuji, S. H. Hyon, Macromolecules, 1987, 20, 904–906.
(32) K. Masutani, S. Kawabata, T. Aoki and Y. Kimura, Polym Int., 2010, 59, 1526–1530.
(33) Y. Tachibana, H. Takayama and K. Kasuya, Polymer Degradation and Stability, 2015, 112, 185–191.
(34) R. Chang, G. Shan, Y. Bao, and P. Pan, Macromolecules, 2015, 48, 7872−7881.
(35) L. Cartier, T. Okihara, B. Lotz, Macromolecules, 1997, 30, 6313–6322.
(36) J. R. Sarasua, N. L. Rodríguez, A. L. Arraiza and E. Meaurio, Macromolecules 2005, 38, 8362–8371.
(37) R. H. Chien, C. T. Lai and J. L. Hong, J. Phys. Chem. C. 2011, 115, 5958–5965
CH2
(1) K. Rurack, U. Resch-Genger, Chem. Soc. Rev., 2002, 31,116−127.
(2) V. Amendola, L. Fabbrizzi, F. Foti, M. Licchelli, C. Mangano, P. Pallavicini, A. Poggi, D. Sacchi, A. Taglietti, Chem. Rev., 2006, 250, 273−299.
(3) Y. K. Yang, K. J. Yook, J. Tae, J. Am. Chem. Soc., 2005, 127, 16760−16761.
(4) J. Mao, L. Wang, W. Dou, X. Tang, Y. Yan, W. Liu, Org. Lett., 2007, 9, 4567−4570.
(5) L. Tang, Y. Li, R. Nandhakumar, J. Qian, Monatsh. Chem., 2010, 141, 615−620.
(6) Mc Graw – Hill., “Encyclopedia of Science and Technology”, Vth Edition, Mc Graw – Hill Book Company, New York (1982).
(7) C. Reilly, “Metal Contamination of Food”, Applied science publishers Ltd, London (1980).
(8) Marczenko, Z, “Spectrophotometric Determination of Elements”, Ellis Horwood Ltd. England (1979).
(9) B. B. Lowell, B. M. Spiegelman, Nature, 2000, 404, 652−660.
(10) X. L. Shi, G. J. Mao, X. B. Zhang, H. W. Liu, Y. J. Gong, Y. X. Wu, L. Y. Zhou, J. Zhang, W. Tan, Talanta, 2014, 130, 356−362.
(11) A. Liu, M. Hong, W. Yang, S. Lu, D. Xu, Tetrahedron, 2014, 70, 6974−6979.
(12) Z. Q. Hu, M. Li, M. D. Liu, W. M. Zhuang, G. K. Li, Dyes Pigm., 2013, 96, 71−75.
(13) J. Fan, C. Lin, H. Li, P. Zhan, J. Wang, S. Cui, M. Hu, G. Cheng, X. Peng, Dyes Pigm., 2013, 99, 620−626.
(14) A. J. Weerasinghe, C. Schmiesing, E. Sinn, Tetrahedron Lett., 2009, 50, 6407−6410.
(15) J. Wang, H. Li, L. Long, G. Xiao, D. Xie, J. Lumin., 2012, 132, 2456−2461.
(16) Z. Q. Hu, C. S. Lin, X. M. Wang, L. Ding, C. L. Cui, S. F. Liu, H. Y. Lu, Chem. Commun., 2010, 46, 3765−3767.
(17) (a) C. H. Lee, H. Miyaji, D. W. Yoon and J. L. Sessler, Chem. Commun., 2008, 24; (b) J. S. Kim and D. T. Quang, Chem. Rev., 2007, 107, 3780; (c) A. T. Wright and E. V. Anslyn, Chem. Soc. Rev., 2006, 35, 14; (d) J. Yoon, S. K. Kim, N. J. Singh and
K. S. Kim, Chem. Soc. Rev., 2006, 35, 355; (e) P. A. Gale, Acc. Chem. Res., 2006, 39, 465; (f) T. Gunnlaugsson, M. Glynn, G. M. Tocci, P. E. Kruger and F. M. Pfeffer, Coord. Chem. Rev., 2006, 250, 3094; (g) J. F. Callan, A. P. de Silva and D. C. Magri, Tetrahedron, 2005, 61, 8551; (h) J. Zhao, M. G. Davidson, M. F. Mahon, G. Kociok-Kohn and T. D. James, J. Am. Chem. Soc., 2004, 126, 16179; (i) H. Cao and M. D. Heagy, J. Fluoresc., 2004, 14, 569; (j) R. Martı’nez-Ma’n˜ ez and F. Sancano’ n, Chem. Rev., 2003, 103, 4419; (k) J. L. Sessler and D. Seidel, Angew. Chem., Int. Ed., 2003, 42, 5134; (l) P. D. Beer and P. A. Gale, Angew. Chem., Int. Ed., 2001, 40, 486; (m) A. P. de Silva, H. Q. N. Gunaratne, T. A. Gunnlaugsson, T. M. Huxley, C. P. McCoy,
J. T. Rademacher and T. E. Rice, Chem. Rev., 1997, 97, 1515; (n) A. W. Czarnik, Acc. Chem. Res., 1994, 27, 302.
(18) U. Pischel, Angew. Chem. Int. Ed., 2007, 46, 4026.
(19) M. Burnworth, S. J. Rowan and C. Weder, Chem.–Eur. J., 2007, 13, 7828.
(20) B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH Verlag GmbH, New York, 2001, ch. 10.
(21) J. Chen, F. Zeng, S. Wu, J. Su, Z. Tong, Small, 2009, 5, 970−978.
(22) M. Xu, S. Wu, F. Zeng, C. Yu, Langmuir, 2010, 26, 4529−4534.
(23) C. Li, S. Liu, Chem. Commun., 2012, 48, 3262−3278.
(24) B. Ma, S. Wu, F. Zeng, Y. Luo, J. Zhao, Z. Tong, Nanotechnology, 2010, 21, 195501.
(25) X. Wan, S. Liu, J. Mater. Chem., 2011, 21, 10321−10329.
(26) D. H. Reneker, I. Chun, Nanotechnology, 1996, 7, 216−223.
(27) A. Babel, D. Li, Y. Xia, S. A. Jenekhe, Macromolecules, 2005, 38, 4705−4711.
(28) S. K. Chae, H. Park, J. Yoon, C. H. Lee, D. J. Ahn, J. M. Kim, Adv. Mater., 2007, 19, 521−524.
(29) Kuo, C. C.; Lin, C. H.; Chen, W. C. Macromolecules, 2007, 40, 6959−6966.
(30) Y. S. Huang, C. C. Kuo, Y. C. Shu, S. C. Jang, W. C. Tsen, F. S. Chuang, C. C. Chen, Macromol. Chem. Phys., 2014, 215, 879−887.
(31) C. C. Kuo, Y. C. Tung, W. C. Chen, Macromol. Rapid Commun., 2010, 31,65−70.
(32) Y. C. Chiu, C. C. Kuo, J. C. Hsu, W. C. Chen, ACS Appl. Mater. Interfaces, 2010, 2, 3340−3347.
(33) Y. C. Chiu, Y. Chen, C. C. Kuo, S. H. Tung, T. Kakuchi, W. C. Chen, ACS Appl. Mater. Interfaces, 2012, 4, 3387−3395.
(34) L. N. Chen, Y. C. Chiu, J. J. Hung, C. C. Kuo, W. C. Chen, Macromol. Chem. Phys., 2014, 215, 286−294.
(35) X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, L. A. Samuelson, Nano Lett., 2002, 2, 1273−1275.
(36) W. Wang, Q. Yang, L. Sun, H. Wang, C. Zhang, X. Fei, M. Sun, Y. Li, J. Hazard. Mater., 2011, 194, 185−192.
(37) J. S. Kim, J. Yoon et al., Chem. Soc. Rev., 2008, 37, 1453–1744.
(38) K.K. Yu, K. Li, J.T. Hou, J. Yang, Y.M. Xi and X.Q. Yu, Polym. Chem., 2014, 5, 5804.
(39) S. L. Deng, T. L. Chen, W. L. Chien, J. L. Hong, J. Mater. Chem. C 2014, 2, 651–659.
(40) J. Madsen, N. J. Warren, and S. P. Armes, Biomacromolecules 2011, 12, 2225–2234
(41) A. Alba, O. T. d. Boullay, B. Martin-Vaca and D. Bourissou, Polym. Chem., 2015,6, 989-997
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code