Responsive image
博碩士論文 etd-0612116-154404 詳細資訊
Title page for etd-0612116-154404
論文名稱
Title
氮-異丙基丙烯醯胺和甲基丙烯酸共聚合物的二氧化碳應答行為之研究
CO2 responsiveness of Poly(N-isopropylacrylamide-co-methacrylic acid)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-16
繳交日期
Date of Submission
2016-07-12
關鍵字
Keywords
氮-異丙基丙烯醯胺、丙烯酸、甲基丙烯酸、較低臨界溶解溫度、應答型高分子、超臨界二氧化碳
N-isopropylacrylamide, acrylic acid, methacrylic acid, lower critical solution temperature, supercritical CO2, responsive polymers
統計
Statistics
本論文已被瀏覽 5633 次,被下載 90
The thesis/dissertation has been browsed 5633 times, has been downloaded 90 times.
中文摘要
本研究以自由基聚合反應,合成氮-異丙基丙烯醯胺(N-isopropyl acrylamide, NIPAAm)與丙烯酸(acrylic acid, AA)或與甲基丙烯酸(methacrylic acid, MAA)之隨機共聚物(random copolymer):poly(NIPAAm-co-AA)及poly(NIPAAm-co-MAA);也以可逆加成-片段鏈轉移聚合反應(reversible addition-fragmentation chain transfer radical polymerization, RAFT),合成PMAA-b-PNIPAAm嵌段共聚物(block copolymer)。調查各共聚物對溫度、pH及CO2之應答行為。以紫外光-可見光光譜儀、示差掃描熱卡分析儀、數位相機調查水溶液樣品之較低臨界溶解溫度(LCST)隨pH值之變化,實驗結果發現,水溶液樣品的LCST會隨pH值增加而上升。以高壓DSC量測不同CO2壓力對聚合物水溶液LCST的影響,發現poly(NIPAAm-co-AA)共聚物之LCST隨CO2壓力升高而降低。共聚物的Tg會隨AA或MAA含量先上升而下降,乃因NIPAAm之醯胺基團與AA(或MAA)之羧酸基團會形成強壯的分子間氫鍵所致。若poly(NIPAAm-co-AA)及poly(NIPAAm-co-MAA)在不同pH值成膜,Tg隨pH值先下降再上升,因當pH上升時,COOH會部分解離成COO-,分子間氫鍵強度降低,Tg因而下降,但當pH上升很高時,COOH會全部解離成COO-,陰電荷相互排斥使聚合物分子因而變僵硬,Tg因而再上升。Poly(NIPAAm-co-AA)及poly(NIPAAm-co-MAA)膜經超臨界CO2 (supercritical carbon dioxide, scCO2)處理後,Tg會增高,可能因scCO2處理會促進分子間的氫鍵作用力;但是PMAA-b-PNIPAAm經scCO2處理,Tg反而會降低,可能因block copolymer會形成微胞,CO2容易和PNIPAAm有交互作用力因而留在微胞內部,使自由體積增加,Tg因而下降。最後將嵌段共聚物PMAA-b-PNIPAAm水溶液通入CO2,在某些條件下,PMAA-b-PNIPAAm具有CO2應答性,可很明顯觀察溶液的混濁度變化(即LCST變化);然而隨機共聚物poly(NIPAAm-co-AA)和poly(NIPAAm-co-MAA)對CO2的應答則很不明顯。
Abstract
In this study, random copolymers of poly(N-isopropylacrylamide-co-acrylic acid) (i.e., poly(NIPAAm-co-AA)) and poly(N-isopropylacrylamide-co-methacrylic acid) (i.e., poly(NIPAAm-co-MAA)) were prepared by free radical polymerizations and block copolymer of poly(methacrylic acid-b-N-isopropylacrylamide) (i.e., PMAA-b-PNIPAAm)) was prepared by reversible-addition-fragmentation chain transfer radical polymerization. Temperature, pH, and CO2 responsiveness of these copolymers were investigated. UV-vis, DSC, and digital camera were used to investigate the pH dependence of the lower critical solution temperature (LCST) for copolymer aqueous solutions. Experimental results found that LCST of all aqueous solutions were increasing with increasing pH. High pressure DSC measurements found that LCST of poly(NIPAAm-co-AA) was decreasing with increasing CO2 pressure. Tg of films as cast from aqueous solutions of as-synthesized random copolymers were increasing with increasing AA (or MAA) compositions in NIPAAm-rich copolymers but decreasing with AA (or MAA) compositions in AA (or MAA)-rich copolymers. This suggested that strong hydrogen bondings be formed between amide groups of NIPAAm units and carboxylic acid groups of AA (or MAA) units. Tg of random copolymers films as cast from aqueous solutions of different pH was seen to first decrease with pH and then increase with pH. This indicated that COOH dissociated to COO- as pH was increased, leading to a decrease of Tg because of a decrease of intermolecular hydrogen bonding, and COOH could completely dissociate to COO- as pH was increased to be high, leading to an increase of Tg with pH because the negatively charged copolymer molecules could become rigid. Following treatments in a supercritical carbon dioxide fluid (scCO2), Tg of random copolymer film was increased due to promotion of intermolecular hydrogen bonding by scCO2; however, Tg of block copolymer film was decreased due to the plasticizing effect of CO2 in the micelle of the block copolymer. Upon CO2 bubbling in aqueous solution of PMAA-b-PNIPAAm, CO2 responsiveness could be clearly seen by the change of the cloud point in aqueous solution at some particular conditions. CO2 responsiveness of poly(NIPAAm-co-AA) and poly(NIPAAm-co-MAA), however, were not clear.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract v
目錄 viii
圖目錄 xii
表目錄 xviii
第一章 前言 1
第二章 文獻回顧 3
2-1刺激應答型高分子 3
2-1-1聚氮-異丙基丙烯醯胺之簡介 3
2-1-2 PNIPAAm 於水中之相轉移現象 4
2-1-3 PNIPAAm分子量對LCST之影響 5
2-1-4聚丙烯酸之簡介 6
2-1-5聚氮-異丙基丙烯醯胺和丙烯酸之共聚物的性質 7
2-1-6聚甲基丙烯酸之簡介 8
2-1-7聚氮-異丙基丙烯醯胺和甲基丙烯酸之共聚物的性質 8
2-2較低臨界溶解溫度(LCST) 10
2-2-1較低臨界溶解溫度(LCST)之簡介 10
2-2-2較低臨界溶解溫度(LCST)之測定 11
2-3超臨界流體 13
2-3-1超臨界流體之特性 14
2-3-2選擇超臨界二氧化碳流體(supercritical carbon dioxide,scCO2)的原因 14
2-3-3超臨界流體之應用 14
2-4高分子與二氧化碳交互作用 15
2-4-1高分子與高壓二氧化碳作用 15
2-4-2 CO2-switchable 高分子 17
2-5可逆加成-片段鏈轉移聚合反應(RAFT) 19
2-5-1可逆加成-片段鏈轉移聚合反應(RAFT)之介紹 19
2-5-2以RAFT反應合成雙嵌段共聚物(block copolymer) 20
2-6研究動機 22
第三章 實驗步驟及方法 23
3-1實驗藥品 23
3-2實驗設備 23
3-3實驗步驟 26
3-3-1 PNIPAAm均聚物之合成及純化 26
3-3-2 Poly(NIPAAm-co-AA) 及 Poly(NIPAAm-co-MAA)共聚物之合成及純化 26
3-3-3 PAA均聚物之合成及純化 27
3-3-4 PMAA均聚物之合成及純化 27
3-3-5 以RAFT反應合成PtBMA-b-PNIPAAm 28
3-3-6將PtBMA-b-PNIPAAm水解成PMAA-b-PNIPAAm 28
3-3-7以FT-IR 鑑定分析PNIPAAm及共聚物 30
3-3-8以NMR分析Poly(NIPAAm-co-AA)及Poly(NIPAAm-co-MAA)共聚物組成 30
3-3-9以GPC量測PNIPAAm、PAA、PMAA和共聚物之分子量 30
3-3-10以UV-Vis 光譜儀測量Poly(NIPAAm-co-AA)水溶液之LCST 30
3-3-11以DSC測量共聚物水溶液之LCST 30
3-3-12以HP DSC測量Poly(NIPAAm-co-AA)水溶液之LCST 30
3-3-13以DSC測定共聚物玻璃轉移溫度(Tg) 31
第四章 結果與討論 32
4-1 Poly(NIPAAm-co-AA)共聚物之鑑定 32
4-1-1傅立葉轉換紅外線光譜儀(FT-IR)鑑定材料結構 32
4-1-2核磁共振光譜儀(NMR)分析共聚物之組成 34
4-1-3凝膠滲透層析儀(GPC)測共聚物之分子量 36
4-2 Poly(NIPAAm-co-AA)水溶液之LCST測定 37
4-2-1以UV-vis量測poly(NIPAAm-co-AA)水溶液之LCST 37
4-2-2以DSC量測Poly(NIPAAm-co-AA)水溶液之LCST 40
4-2-3以HP DSC量測75NIPAAm-25AA水溶液之LCST 44
4-3 Poly(NIPAAm-co-AA)玻璃轉移溫度(Tg)之研究 49
4-3-1 Poly(NIPAAm-co-AA)的組成對於Tg之影響 49
4-3-2不同pH值成膜對於Poly(NIPAAm-co-AA)的Tg之影響 51
4-3-3 scCO2處理對共聚物Poly(NIPAAm-co-AA)Tg之影響 54
4-4 Poly(NIPAAm-co-MAA)共聚物之鑑定 58
4-4-1傅立葉轉換紅外線光譜儀(FT-IR)鑑定材料結構 58
4-4-2核磁共振光譜儀(NMR)分析共聚物之組成 60
4-4-3凝膠滲透層析儀(GPC)測共聚物之分子量 62
4-5 Poly(NIPAAm-co-MAA)水溶液之LCST測定 63
4-5-1以UV-vis量測poly(NIPAAm-co-MAA)水溶液之LCST 63
4-6 Poly(NIPAAm-co-MAA)玻璃轉移溫度(Tg)之研究 67
4-6-1 Poly(NIPAAm-co-MAA)的組成對於Tg之影響 67
4-6-2不同pH值成膜對於Poly(NIPAAm-co-MAA)的Tg之影響 69
4-6-3 scCO2處理對共聚物poly(NIPAAm-co-MAA)Tg之影響 72
4-7 PMAA-b-PNIPAAm雙嵌段共聚物之鑑定 75
4-7-1傅立葉轉換紅外線光譜儀(FT-IR)鑑定材料結構 75
4-7-2核磁共振光譜儀(NMR)分析共聚物之組成 77
4-8 PMAA-b-PNIPAAm玻璃轉移溫度(Tg)之研究 79
4-8-1 PMAA-b-PNIPAAm玻璃轉移溫度(Tg)之研究 79
4-8-2不同pH值成膜對於PMAA-b-PNIPAAm的Tg之影響 80
4-8-3 scCO2處理對PMAA-b-PNIPAAmTg之影響 81
4-9 PMAA-b-PNIPAAm雙嵌段共聚物水溶液之LCST測定 83
4-9-1以UV-vis量測PMAA-b-PNIPAAm雙嵌段共聚物水溶液之LCST 83
4-9-2以拍照方式觀察PMAA-b-PNIPAAm雙嵌段共聚物水溶液隨溫度及pH值LCST之變化 85
4-10 PMAA-b-PNIPAAm雙嵌段共聚物水溶液的二氧化碳應答行為之研究 87
第五章 結論 91
第六章 參考文獻 93
參考文獻 References
1. Durme, K.V. ; Assche, G.V. ; Mele, B.V. Macromolecules, 2004, 37, 9596-9605.
2. 黃安義,化工技術,1998,第6卷,第2期.
3. Shieh, Y. T. ; Su, J. H. ; Manivannan, G. ; Lee, P. ; Sawan, S.; Spall, D. J. Applied Polymer Science, 1996, 59, 695-705.
4. Shieh, Y. T. ; Su, J. H. ; Lee, S. S. J. Applied Polymer Science, 1996, 59, 707-717.
5. Kazarian, S. G. ; Vincent, M. F. ; Bright, F. V. ; Liotta,C. L. ; Eckert, C. A. J.American Chemical Society, 1996, 118, 1729-1736.
6. Dehui H. ; Olivier B. ; Surjith K. ; Xia T. ; Luc T. ; Yue Zhao Macromolecules, 2012, 45, 7440-7445.
7. Dehui H. ; Xia T. ; Olivier B. ; Yue Z. MacroLetters, 2012, 1, 57-61.
8. Bae, Y. H. ; Okano, T. ; Kim, S. W. J. Controlled Release, 1989, 9, 271-279.
9. Alhaique, F. ; Marcheft, M. ; Riccier, F. M. ; Santucci, E. J. Pharmaeol.,1981, 33, 413-418.
10. Schild, H. G. J.Polymer Science, 1992, 17, 163–249.
11. Boutris C. ; Chatzi E. G. ; Chatzi ; Kiparissides, C. Polymer, 1997, 38, 2567-2570.
12. Tanaka, F. ; Okada, Y. Macromolecules, 2005, 38, 4465-4471.
13. Furyk, S. ; Zhang, Y. ; Ortiz-Acosta, D. ; Cremer, P. S. ; Bergbreiter, D. E. Journal of Polymer Science, 2006, 44, 1492-1501.
14. Jones, M. S. European Polymer Journal, 1999, 35, 795-801.
15. Yoo, M.K. ; Sung, Y.K. ; Cho, C.S. ; Lee, Y.M. Polymer, 1997, 38, 2759-2765.
16. Chen, G. ; Hoffman, AS. Nature, 1995, 373, 49-52.
17. Chen, G. ; Hoffman, AS. Macromol Rapid Commun, 1995, 16, 175-182.
18. Olea, A. F.; Thomas, J. K. Macromolecules, 1989, 22, 1165.
19. Yang, X. , Lee, H.Y., You, S.G. , Kim, J.C. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 109-115.
20. E. Diez-Pen; I. Quijada-Garrido; P. Frutos; J. M. Barrales-Rienda Macromolecules, 2002, 35, 2667-2675.
21. Vasile, C. ; Kulshreshtha, A. K. Ltd.: Shawbury, UK, 2003, 5, 288-365.
22. Lin, S. Y. ; Chen, K. S. ; Liang, R. C. J.Polymer, 1999, 40, 2619-2624.
23. Zhang, J. ; Nicholas A.; Peppas, N. .J. Macromolecules,2000, 33, 102-107.
24. Yong, P. ; Chen, J. ; Yang, L. ; Shi, L. ; Tao, Q. ; Hui, B. ; Li, J. J. Biomater. Sci. Polymer Edn, 2004, 15, 585-594.
25. Scholsky, K.M. Journal of Supercritical Fluids, 1993, 6, 103-127.
26. Wong, J.M. ; Kuzmicky, K.Y. ; Ningh, P.A. ; Woodrow, S. ; Hsien, J.E. ; Seiber, D.P.H. Anal.Chem, 1991, 63 ,15, 1644-1650.
27. Shieh, Y.T. ; Liu, K.H. Journal of Supercritical Fluids, 2003, 25, 261-268.
28. Schilli, C.M.; Zhang, M.; Rizzardo, E.; Thang, S.H.; Chong, Y.K.; Edwards, K.; Karlsson, G.; Muller, A.H.E. Macromolecules, 2004, 37, 7861-7866.
29. Nuopponen, M.; Ojala, J.; Tenhu,H. Polymer, 2004, 45, 3643–3650.
30. Yang, C.; Cheng, Y.L. Journal of Applied Polymer Science, 2006, 102, 1191-1201.
31. Ramireddy, C.; Tuzart, Z.; Prochazka, K.; Webber, S. E.; Munk, P. Macromolecules, 1992, 25, 2541-2545.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code