Responsive image
博碩士論文 etd-0612118-132958 詳細資訊
Title page for etd-0612118-132958
論文名稱
Title
以波浪及海流耦合數值模式推算南灣海域波浪特性
A Numerical Study on Coupled Current and Wave Characteristics in Nanwan Bay
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-05
繳交日期
Date of Submission
2018-07-18
關鍵字
Keywords
異常巨浪、波流交互作用、水動力模式、波浪模式、南灣、瘋狗浪
Rogue wave, Hydrodynamic model, Freak wave, Wave-current interaction, Nanwan, Wind wave model
統計
Statistics
本論文已被瀏覽 5703 次,被下載 497
The thesis/dissertation has been browsed 5703 times, has been downloaded 497 times.
中文摘要
台灣每年遭受數個颱風襲擊,颱風所帶來的氣壓變化及強風吹拂,對台灣海域波浪及海流的運動特性有很大的影響。而海流也會改變波浪的特性,因此在流場變化較大的區域,必須考慮波流交互作用的影響。本研究使用非結構化網格波浪-海流耦合模式(SCHISM-WWM)進行計算,適合用在近岸等需要高解析度網格的研究。
本研究探討台灣墾丁南灣海域波流交互作用的影響,風場使用中央氣象局天氣預測系統(WRF)的區域性大氣模式預報的海面風場資料,配合水深地形及流場計算,進行耦合分析南灣海域的波浪現象。模式運算結果與浮標觀測資料的驗證比較,數值模式計算的示性波高具有良好的準確度。結果顯示當波向與流向相反的情況下,會縮短波長,使波數增加,波高也因波數的增加而變高,並影響波浪尖銳度。
Abstract
Taiwan suffered several typhoons every single year. The change in atmospheric pressure and strong winds caused by typhoons have a great impact on the sea wave motion characteristics near Taiwan. Current would also influence the wave characteristics. It is therefore important to understand the effects by wave-current interactions. We applied a fully coupled wave-current model (SCHISM-WWM) that based on unstructured grids which is suitable for high-resolution coastal studies to calculate the phenomenon that may occur on the sea surface. To know the wave-current interactions that may occur in Nanwan bay, we use the wind field data from the Central Weather Bureau’s weather forecasts(WRF). The coupled model is shown to be able to capture the wave-current interactions in Nanwan bay. Our results shows that the wavelength becomes shorter in the opposing current and lead to the increasing of wave number. Wave height and wave steepness are also getting higher due to the changes of the wave number.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖目錄 viii
表目錄 xi
縮寫對照表 xii
第一章 緒論 1
1-1研究動機 1
1-2研究目的 2
第二章 文獻回顧 3
2-1瘋狗浪事件 3
2-1-1世界著名瘋狗浪事件 3
2-1-2台灣瘋狗浪事件 7
2-2瘋狗浪成因 8
2-3波流交互作用 9
2-4波浪推算 12
2-5波浪數值模式 13
第三章 研究方法 15
3-1南灣海域背景資料回顧 15
3-1-1南灣地形 15
3-1-2南灣風場 15
3-2南灣潮汐與流場 16
3-3 模式介紹 16
3-4 水動力模式(SCHISM) 17
3-5 模式設定 23
3-5-1 模式網格設定 23
3-5-2 邊界設定 26
3-5-3 潮汐水位之驗證 26
3-5-4 流場討論 28
3-6波浪數值模式(WWM) 36
3-6-1控制方程式 36
3-6-2數值方法 37
3-6-3模式耦合 38
3-7案例設計 39
3-7-1氣象之設定 42
3-7-2模式設定 43
3-7-3誤差分析 45
第四章 結果與討論 46
4-1波浪模式(未加入潮汐影響) 46
4-2波流耦合模式(加入潮汐影響) 51
4-3大網格範圍純波浪模式(未加入潮汐影響) 56
4-4大網格範圍波流耦合模式(加入潮汐影響) 58
4-5結果分析 60
第五章 結論與建議 74
5-1結論 74
5-2建議 75
參考文獻 76
參考文獻 References
徐進華(2011),臺灣外海瘋狗浪之旋性與非線性理論及可預測性研究 (2/4),台北市:交通部運輸研究所。
氣象局(2014)氣象百科_海象問答_波浪,中央氣象局編印。 (http://www.cwb.gov.tw/V7/ knowledge/marine/wave001.htm)
張振洋(2006)基隆外海三連波與異常波浪探討,國立臺灣海洋大學海洋環境資訊系碩士論文。
張憲國(2001),「波浪推算」,海洋工程學,郭一羽主編,第四章,文山出版,第一版。
張憲國、歐善惠(2013)「神出鬼沒的瘋狗浪」, 專題報導,科學發展,第 488 期,第 6-9 頁。
梁乃匡(2008) 「颱風湧浪與怪浪的預報」,第 10 屆水下技術研討會暨國科會成果發表會論 文集。
梁乃匡、林文宗(1978)「薇拉颱風波浪實測與推算之比較」,第 2 屆海洋工程研討會論文集, 第 23-27 頁。
莊文傑, & 曾相茂. (2014), 淺談瘋狗浪之預警, 第 36 屆海洋工程研討會論文集, 第 95-100 頁.
許明光、曾俊超、高家俊(1993)「台灣地區『瘋狗浪』之調查及成因初探」,第 15 屆海洋工程 研討會論文集,第 525-534 頁。
許泰文(2003),「近岸水動力學」,台北:科技圖書。
陳正宏(1999)瘋狗浪原因的初探,國立成功大學水利及海洋工程研究所碩士論文。
陳正改(2014,2)。由「瘋狗浪」事件看我國的海象監測網。《科學研習》, 53(2),32~39。
陳冠宇(2002)「瘋狗浪的可能機制」,海洋工程學刊,第 2 卷,第 1 期,第 93-106 頁。
陳冠宇、蘇青和、曾相茂(2001)「瘋狗浪的可能機制與特性」,第 23 屆海洋工程研討會論文 集,第 140-146 頁。
陳家銘(2007),應用波浪數值模式推算台灣海域波浪特性,國立中山大學海洋環境及工程學系研究所碩士論文
陳陽益, & 莊文傑.(1991), 流作用對波高特性變化之研究, 第 13 屆海洋工程研討會論文集, 第 352-364 頁.
曾薐璇、董東璟、陶愛峰、鄭金海(2011)「海洋實測資料中異常波浪特性之研究」,第 33 屆海洋工程研討會論文集,第 151-156 頁。
湯麟武,黃煌煇(1979):台灣電力公司核能三廠出水口增建導流堤以改善熱汙染擴散研究試驗報告,國立成功大學台南水工試驗所研究試驗報告第四十二號,157pp.
葉國傑(1984):南灣附近海域低頻運動之研究,國立台灣大學海洋研究所碩士論文,66 pp.
董東璟(2008)「時頻分析應用在異常波浪的分析」,第一屆時頻分析與地球科學研討會簡報檔,中央研究院地球科學研究所,共 17 頁。
董東璟(2013)災害性瞬變海象之研究 (2/4)。交通部中央氣象局委託研究計畫 ( 期末 ) 成果報告,計畫編號: MOTC-CWB-102-O-03。
廖建明(2001),「近岸風浪推算之研究」,國立成功大學水利及海洋工程研究所博士論文。
臺灣外海瘋狗浪之旋性與非線性理論及可預測性研究(2/4), 交通部運輸研究所, 中華民國 100 年 5 月
蔡政翰、林盈成、曾相茂(2001)「群波與瘋狗浪」,海洋工程學刊,第 1 卷,第 1 期,第 71-82 頁。
蔡政翰、董東璟、蔡仁智(2015),災害性瞬變海象之研究(4/4),交通部中央氣象局委託研究計畫(期末)成果報告,計畫編號:MOTC-CWB-104-O-03
"Critical review on potential use of satellite date to find rogue waves" (PDF). European Space Agency SEASAR 2006 proceedings. April 2006. Retrieved February 23, 2008.
Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J. F., Magne, R., Roland, A., ... & Collard, F. (2010). Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. Journal of Physical Oceanography, 40(9), 1917-1941.
Battjes, J. A. (1972). Radiation stresses in short-crested gravity waves. J. Mar. Res., 30, 56-64.
Battjes, J. A., & Janssen, J. P. F. M. (1978). Energy loss and set-up due to breaking of random waves. In Coastal Engineering 1978 (pp. 569-587).
Booij, N., Holthuijsen, L. H., & Ris, R. C. (1996). The" SWAN" wave model for shallow water. In Coastal Engineering 1996 (pp. 668-676).
Chao, S. Y., P. T. Shaw, and J. Wang (1995): Wind relaxation as a possible cause of the South China Sea warm current. Journal of Oceanography, 51, 111-132.
Davidan, I. N. and Lopatukhin, L. I.: 1985, Na vstrechy so stormami (In Russian) (To the Encounter with Storms). Gidrometeoizdat, Leningrad, pp. 105–123.
Dold, J. W., & Peregrine, D. H. (1987). Water-wave modulation. In Coastal Engineering 1986 (pp. 163-175).
Doong, D.J., Chuang, L.Z.H., Kao, C.C., Lin, Y.B. and Jao, K.C. (2009) Statistics of Buoy-observed Waves during Typhoons at Taiwanese Waters from 1997 to 2008, Proceedings of OCEANS'09 MTS/IEEE, Biloxi, MS, USA, 26-29.
Dysthe, K. B. (2001). Modelling a” Rogue Wave”-Speculations or a realistic possibility. Rogues Waves 2000, 255-264.
Dysthe, K., Krogstad, H. E., & Müller, P. (2008). Oceanic rogue waves. Annu. Rev. Fluid Mech., 40, 287-310.
Eldeberky, Y., & Battjes, J. A. (1996). Spectral modeling of wave breaking: Application to Boussinesq equations. Journal of Geophysical Research: Oceans, 101(C1), 1253-1264.
Faulkner, D., Rogue Waves – Defining their characteristics for marine design, Proceedings of Rogue Waves 2000, IFREMER, Brest, France, Nov. 29-30, 2000.
Fu, S.-B. (1991): Tidal and wind modulations of water temperature in Nan Wan. Master thesis, Inst. of Oceanography, National Taiwan Univ., 53pp.
Gelci, R., Cazalé, H., & Vassal, J. (1957). Prévision de la houle.{L} a méthode des densités spectroangulaires. Bulletin d'information du Comité d'Océanographie et d'Etude des Côtes, 9, 416-435.
Gutshabash, Y., & Lavrenov, I. V. (1986). Swell transformation in the Cape {A} gulhas Current. Izv. Atmos. Ocean. Phys., 22(6), 494-497.
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., ... & Meerburg, A. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft 8-12.
Hasselmann, S., Hasselmann, K., Allender, J. H., & Barnett, T. P. (1985). Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15(11), 1378-1391.
Henderson, K. L., Peregrine, D. H., & Dold, J. W. (1999). Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation. Wave motion, 29(4), 341-361.
Hung, S. H. (1985). Study on the resonance effect of wave-wave interaction in medium water depth, Master Thesis, Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, Taiwan
Hwang, P. A. (2005). Altimeter measurements of wind and wave modulation by the Kuroshio in the Yellow and East China Seas. Journal of oceanography, 61(5), 987-993.
Irvine, D. E. (1987). Extreme waves in the Agulhas- A case study in wave-current interaction. Johns Hopkins APL Technical Digest, 8(1), 100-106.
Irvine, D. E., & Tilley, D. G. (1988). Ocean wave directional spectra and wave‐current interaction in the Agulhas from the Shuttle Imaging Radar‐B synthetic aperture radar. Journal of Geophysical Research: Oceans, 93(C12), 15389-15401.
Kharif, C. and Pelinovsky, E., Physical Mechanisms of the Rogue Wave Phenomenon, European Journal of Mechanics B/Fluids, Vol. 22, pp. 603-634, 2003.
Klinting, P. and Sand, S.E. (1987) Analysis of Prototype Freak Waves, In: Coastal Hydrodynamics, Dalrymple, R.A. ed., ASCE, 618-632.
Kudryavtsev, V. N., Grodsky, S. A., Dulov, V. A., & Bol'Shakov, A. N. (1995). Observations of wind waves in the Gulf Stream frontal zone. Journal of Geophysical Research: Oceans, 100(C10), 20715-20727.
Lavrenov, I. V.: 1985, Vstrecha c volnoi ybiicei (In Russian) (About the Wave Killer Accident). – Morskoy Flot, No. 12, pp. 28–30.
Lavrenov, I., The Wave Energy Concentration at the Agulhas Current off South Africa, Natural Hazard, Vol.17, pp. 117–127, 1998.
Lee, H.-J., S.-Y., Chao, K.-L., Fan and T.-Y. Kuo (1999b) Tide-Induced Eddies and Upwelling in a Semi-enclosed Basin: Nan Wan. Estuarine, Coastal and Shelf Science, in press.
Lee, H.-J., S.-Y., Chao, K.-L., Fan, Y.-H., Wang, and N. K., Liang (1997) Tidally induced upwelling in a semi-enclosed basin: Nan Wanbay. Journal of Oceanography, 53, 467-480.
Lee, H.-J., S.-Y., Chao,and K.-L., Fan (1999a) Flood-Ebb disparity of tidally Induced recirculation eddies in a semi-enclosed basin: Nan Wan Bay. Continental Shelf Research, 19, 871-890.
Longuet-Higgins, M. S. & Stewart, R. W. 1960 Changes in the form of short gravity waves on long waves and tidal currents. J.Fluid Mech. 8, 565¬ 583.
Longuet-Higgins, M. S. & Stewart, R. W. 1961 The changes in amplitude of short gravity waves on steady non-uniform currents. J. Fluid Mech. 10, 529-549.
Longuet-Higgins, M. S., & Stewart, R. W. (1964, August). Radiation stresses in water waves; a physical discussion, with applications. In Deep Sea Research and Oceanographic Abstracts (Vol. 11, No. 4, pp. 529-562). Elsevier.
Mallory, J. K. (1974). Abnormal waves on the south east coast of South Africa. The International Hydrographic Review, 51(2).
Peregrine, D. H. (1976). Interaction of water waves and currents. In Advances in applied mechanics (Vol. 16, pp. 9-117). Elsevier.
Peregrine, D. H. (1985). Review Lecture-Water waves and their development in space and time. Proc. R. Soc. Lond. A, 400(1818), 1-18.
Pierson Jr, W. J., Neumann, G., & James, R. W. (1971). Practical methods for observing and forecasting ocean waves by means of wave spectra and statistics (No. NOO-HO-PUB-603). NAVAL OCEANOGRAPHIC OFFICE NSTL STATION MS.
Roland, A., Cucco, A., Ferrarin, C., Hsu, T. W., Liau, J. M., Ou, S. H., ... & Zanke, U. (2009). On the development and verification of a 2-D coupled wave-current model on unstructured meshes. Journal of Marine Systems, 78, S244-S254.
Sand, S. E., Hansen, N. O., Klinting, P., Gudmestad, O. T., & Sterndorff, M. J. (1990). Freak wave kinematics. In Water Wave Kinematics (pp. 535-549). Springer, Dordrecht.
Sanderson, R. N. (1974). The unusual waves off south east Africa. Marine Observer, 44(246).
Sankaranarayanan, S., French-mccay, D., &Rowe, J. J. (2014). Two-dimensional hydrodynamic modeling of circulation in Great South Bay and New York Bight. Ocean Engineering, 88, 271–279.
Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean modelling, 9(4), 347-404.
Smith, R. (1976). Giant waves. Journal of Fluid Mechanics, 77(3), 417-431.
Song, Y., & Haidvogel, D. (1994). A semi-implicit ocean circulation model using a generalized topography-following coordinate system. Journal of Computational Physics, 115(1), 228-244.
Sturm, H. (1974). Giant waves. In Ocean (Vol. 2, No. 3, pp. 98-101).
SWAMP group. (1985). Sea Wave Modelling Project (SWAMP). An intercomparison study of wind wave prediction models, part 1: Principal results and conclusions. Ocean Wave Modelling, 256.
Tolman, H. L. (1989). The numerical model {WAVEWATCH}: a third generation model for hindcasting of wind waves on tides in shelf seas.
Uji, T., & Isozaki, I. (1972). The calculation of wave propagation in the numerical prediction of ocean waves. Pap. Met. Geophys, 23, 347-359.
WAMDI Group, T. W. (1988). The WAM model—A third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12), 1775-1810.
Weather Topics (2007) , “Agulhas Current ”, ‘https://weathernews.com/TFMS/topics/wtopics/2007/pdf/20070901.pdf ’, Weathernews 2007.09
White, B. S., & Fornberg, B. (1998). On the chance of freak waves at sea. Journal of fluid mechanics, 355, 113-138.
Yanenko, N. N. The Method of Fractional Steps. 1971. In MATEC Web of Conferences matecconf/2016 (Vol. 84, p. 8400003).
Yasuda, T., Mori, N., & Ito, K. Freak Waves in Unidirectional Wave Trains and Their Properties. Coastal Engineering(1992), 751-764.
Yasuda, T., Mori, N., & Nakayama, S. (1994, January). Freak wave kinematics in unidirectional deep water waves. In The Fourth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
Zhang, Y. J., Ye, F., Stanev, E. V., & Grashorn, S. (2016). Seamless cross-scale modeling with SCHISM. Ocean Modelling, 102, 64-81.
Zhang, Y., & Baptista, A. M. (2008). SELFE: a semi-implicit Eulerian–Lagrangian finite-element model for cross-scale ocean circulation. Ocean modelling, 21(3-4), 71-96.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code