Responsive image
博碩士論文 etd-0612118-155240 詳細資訊
Title page for etd-0612118-155240
論文名稱
Title
使用一次兩位元轉換及一次一位元輪替轉換之具有非二進制校正技術十位元高速連續漸進式類比數位轉換器
A 10-bit High Speed Successive Approximation Register Analog to Digital Converter with Non-binary Error Correction, 2b/Cycle Combine with Alternate 1b/Cycle
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-28
繳交日期
Date of Submission
2018-07-13
關鍵字
Keywords
非二進制校正、連續漸進式、輪替技術、類比數位轉換器、一次兩位元轉換
2b/Cycle, Non-binary Error Correction, Alternate Technique, Successive Approximation Register, Analog to Digital Converter
統計
Statistics
本論文已被瀏覽 5667 次,被下載 2
The thesis/dissertation has been browsed 5667 times, has been downloaded 2 times.
中文摘要
本論文提出了一個解析度為十位元的類比數位轉換器,取樣頻率為一億赫茲(100MHz),設計上,為了提升轉換速度,高位元轉換的部分採用一次二位元轉換,但因為需使用三個比較器,所以提高了發生錯誤的機率,因此本篇架構在高位元的部分使用了非二進制校正技術來容許錯誤發生並修正錯誤;在低位元轉換的部分則使用一次一位元轉換以增加精確度,此外,為了可以進一步提升效率,低位元轉換的部分採用了輪替技術,除了可以更有效率地使用比較器之外,也可以緩解低位元比較時間較長的問題,最後,在低位元的部分加入了一個冗餘位元以增加低位元的容錯能力。
本論文實現了一個一億次取樣率的十位元類比數位轉換器,採用TSMC 90nm製程技術,靜態分析上,其DNL為+1.248 / -0.750 LSB,INL為+1.679 / -1.677 LSB,動態分析上,SFDR與SNDR在尼奎斯特頻率下分別為62.76 dB和56.099 dB,有效位元為9.026 bit,功率消耗為2.397 mW,FoM為45.98 fJ/conv.-step。
Abstract
In this thesis, a 10-bit resolution analog-to-digital converter with 100MHz sampling frequency is proposed. In terms of design, in order to improve the conversion speed, the 2b/cycle conversion is adapted in the conversion of the upper bits. Since three comparators are required to perform the 2b/cycle conversion, it may cause the increase of the error probability. Therefore, the proposed architecture adapts the non-binary correction technique in the upper bits to tolerate fault error and hence correct the error. In the lower bit conversion, a 1b/cycle conversion is implmented to increase the accuracy. Moreover, the architecture also adopted the alternate technique in lower bit conversion to improve the conversion efficiency. This technique not only uses the comparators more efficiently, but also relaxing the issue of the longer comparison time in the lower bit conversions. At last, a redundant bit is added in the lower bits to increase the fault tolerance capability of the lower bits.
This thesis implements a 10-bit analog-to-digital converter with 100MHz sampling frequency by using the TSMC 90nm process technology. For the static analysis, the DNL and INL are +1.248 / -0.750 LSB and +1.679 / -1.677 LSB, respectively. For the dynamic analysis, the SFDR and SNDR at the Nyquist rate are 62.76 dB and 56.099 dB. The ENOB is 9.026 bit, the power consumption is 2.397 mW and FoM is 45.98 fJ / conv.-step.
目次 Table of Contents
目錄
論文審定書 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 viii
表目錄 xi
Chapter 1. 緒論 1
1.1 背景 1
1.2 研究動機與目標 2
1.3 論文章節組織 2
Chapter 2. 基本架構及相關技術介紹 4
2.1 類比數位轉換器(Analog to Digital Converter) 4
2.2 連續漸進式類比數位轉換器(The Successive Approximation ADC) 6
2.2.1. 一次一位元轉換連續漸進式類比數位轉換器 6
2.2.2. 一次兩位元轉換 9
2.2.3. 一次一位元輪替轉換 11
2.2.4. 各轉換技術之優缺點比較 12
2.3 數位校正技術 13
2.3.1. 非二進制數位校正技術 13
2.3.2. 冗餘位元數位校正技術 13
Chapter 3. 目標架構電路介紹與分析 15
3.1 設計考量 15
3.2 取樣保持電路 (Sample & Hold) 15
3.2.1. 取樣開關之導通電阻考量 16
3.2.2. 傳統拔靴帶式開關(Bootstrapped Switch) 18
3.2.3. 改良型拔靴帶式開關 19
3.3 MOS開關 22
3.3.1. 電荷注入效應(Charge Injection) 22
3.3.2. 時脈耦合效應(Clock Feedthrough) 23
3.4 比較器設計 24
3.4.1. 反饋雜訊(Kick-Back Noise) 25
3.4.2. 全差動式動態比較器 27
3.5 電路輸出端驅動能力 28
Chapter 4. 目標類比數位轉換器之實現 30
4.1 整體架構 30
4.2 時脈產生電路 33
4.2.1. 占空比時脈產生器 (Duty Cycle Clock Generator) 33
4.2.2. 非重疊時脈產生器 (Non-overlapping Clock Generator) 35
4.3 電容陣列數位類比轉換器 36
4.3.1. 訊號電容陣列比例及開關操作 36
4.3.2. 參考電壓電容陣列比例及開關操作 38
4.4 非同步控制電路 41
4.5 解碼電路 44
4.5.1. 比較結果轉非二進制碼 44
4.5.2. 數位取代電路 45
4.5.3. 非二進制碼轉二進制碼 46
4.6 類比數位轉換器全電路電路佈局 48
4.7 佈局後之電路調整 49
4.7.1. 電容陣列失真 49
4.7.2. 比較器偏移(Offset) 51
Chapter 5. 效能與模擬結果分析 52
5.1 類比數位轉換器之特性指標 52
5.2 靜態效能(Static Performance) 52
5.2.1. 微分非線性誤差(DNL) 52
5.2.2. 積分非線性誤差(INL) 53
5.3 動態效能(Dynamic Performance) 53
5.3.1. 訊號雜訊比(Signal-to-Noise Rate) 54
5.3.2. 訊號雜訊失真比(Signal-to-Noise &Distortion Rate) 54
5.3.3. 無雜散動態範圍(Spurious-Free Dynamic Range) 55
5.3.4. 有效位數(Effective Number of Bits) 55
5.4 模擬結果 56
5.4.1. 靜態分析 56
5.4.2. 動態分析 58
5.5 規格對照表 59
Chapter 6. 結論與未來展望 61
6.1 結論 61
6.2 未來展望 61
References 63
參考文獻 References
[1] 工業技術與資訊月刊 ( 315期2018年01月號 ) – AIoT的產業新革命, available at : https: //www.itri.org.tw/chi/Content/Publications/contents.aspx?SiteID=1&MmmID=2000&MSid=777744462115730553
[2] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, C. M. Huang, C. H. Huang, L. Bu, and C. C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 386-387, 2010.
[3] H. K. Hong, W. Kim, H. W. Kang, S. J. Park, M. Choi, H. J. Park, and S. T. Ryu, “A-Decision-Error-Tolerant-45-nm-CMOS-7b-1-GS-Nonbinary-2bSAR-ADC,” IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 543-555, Feb. 2015.
[4] L. Kull, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Brändli, M. Kossel, T. Morf, T. M. Andersen, and Y. Leblebici, “A 3.1 mW 8b 1.2 GS/s Single-Channel Asynchronous SAR ADC With Alternate Comparators for Enhanced Speed in 32 nm Digital SOI CMOS,” IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3049-3058, Dec. 2013.
[5] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, Inc., 2000.
[6] C. Lillebrekke, C. Wulff and T. Ytterdal, “Bootstrapped switch in low-voltage digital 90nm CMOS technology,” In NORCHIP Conference, pp. 234-236, Nov. 2005.
[7] H. Chen, L. He, H. Deng, Y. Yin and F. Lin, “A high-performance bootstrap switch for low voltage switched-capacitor circuits,” Radio-Frequency Integration Technology (RFIT), 2014 IEEE International Symposium on, pp. 1-3, 2014.
[8] G. Huang and P. Lin, “A fast bootstrapped switch for high-speed high-resolution A/D converter,” Circuits and Systems (APCCAS), 2010 IEEE Asia Pacific Conference on, pp. 382-385, 2010.
[9] R. J. Baker, “CMOS Circuit Design, Layout, and Simulation,” 3rd ed. John Wiley& Sons, Inc., 2011.
[10] D. A. Johns, K. Martin, “Analog Integrated Circuit Design,” John Wiley& Sons, Inc., 1997.
[11] D. G. Chen, F. Tang, and A. Bermak. “A low-power pilot-DAC based column parallel 8b SAR ADC with forward error correction for CMOS image sensors,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 10, pp. 2572-2583, Oct. 2013.
[12] P. M. Figueiredo, and J. C. Vital. “Kickback noise reduction techniques for CMOS latched comparators,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 541-545, July 2006.
[13] Keysight Technologies Probing Solutions for Logic Analyzers Data Sheet, available at : http://literature.cdn.keysight.com/litweb/pdf/59684632E.pdf?id=1000033658:epsg:dow
[14] J. He, S. Zhan, D. Chen and R. L. Geiger, “Analyses of static and dynamic random offset voltages in dynamic comparators,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 5, pp. 911-919, May 2009.
[15] Y. D. Jeon, Y. K. Cho, J. W. Nam, K. D. Kim, W. Y. Lee, K. T. Hong, and J. K. Kwon, “A 9.15 mW 0.22 〖mm〗^2 10b 204MS/s pipelined SAR ADC in 65nm CMOS,” IEEE Custom Integrated Circuits Conference (CICC) , pp. 1-4, Sep. 2010.
[16] M. Furuta, M. Nozawa and T. Itakura, “A 10-bit, 40-MS/s, 1.21 mW Pipelined SAR ADC Using Single-Ended 1.5-bit/cycle Conversion Technique,” IEEE Journal of Solid-State Circuits, vol. 46, no. 6, pp. 1360-1370, June 2011.
[17] S. S. Wong, U. F. Chio, Y. Zhu, S. W. Sin, S. P. U and R. P. Martins, “A 2.3 mW 10-bit 170 MS/s Two-Step Binary-Search Assisted Time-Interleaved SAR ADC,” IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1783-1794, Aug. 2013.
[18] Z. Cao, S. Yan and Y. Li, “A 32 mW 1.25 GS/s 6b 2b/Step SAR ADC in 0.13μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, no. 3, pp. 862-873, Feb. 2009.
[19] C. C. Liu, S. J. Chang, G. Y. Huang and Y. Z. Lin, “A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13μm CMOS process,” VLSI Circuits, 2009 Symposium on. IEEE, pp. 236-237, Jun. 2009.
[20] The overview & features of 10073C Passive Probe, available at : https://www.keysight.com/en/pd-1000003978:epsg:pro-pn-10073C/passive-probe-101-500-mhz-15-m?cc=US&lc=eng
[21] S. Lee, A. P. Chandrakasan and H. S. Lee, “A 1 GS/s 10b 18.9 mW time-interleaved SAR ADC with background timing skew calibration,” IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2846-2856, Feb. 2014.
[22] Q. Liu, W. Shu and J. S. Chang, “A 400-MS/s 10-b 2-b/Step SAR ADC With 52-dB SNDR and 5.61-mW Power Dissipation in 65-nm CMOS,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 12, pp. 3444-3454, Dec. 2017.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code