Responsive image
博碩士論文 etd-0613106-161128 詳細資訊
Title page for etd-0613106-161128
論文名稱
Title
使用各項異性介質及旋光性介質設計高效能/寬軸比頻寬的四分之一波長極化轉換器
Design of a high-performance/broad axial ratio bandwidth quarter-wave polarizer using anisotropic and chiral media
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-03
繳交日期
Date of Submission
2006-06-13
關鍵字
Keywords
各向異性介質、旋光性介質、極化轉換器
chiral media, anisotropic media, polarizer
統計
Statistics
本論文已被瀏覽 5736 次,被下載 2093
The thesis/dissertation has been browsed 5736 times, has been downloaded 2093 times.
中文摘要
本論文主要是探討四分之一波長極化轉換器,針對正向及斜向入射兩種情況,提出一些設計高效能極化轉換器的方法。另外,針對極化轉換的研究我們提出一個新的觀念--等效電路的觀點。根據這個觀點,使用多層的各向異性及旋光性介質配合基因演算法來增加極化轉換器的極化頻寬。

對於正向入射,我們會分別討論兩種不同情況並提出了一些方法來去除極化轉換器的反射以提高效能。這些極化轉換器在所設計的操作頻率下都可以將線性極化波轉換成完美的圓形極化波並且沒有反射損失。對於斜向入射我們也提出了兩個設計高效能極化轉換器的方法。只需要單一層的各向異性介質就可以達到全穿透的特性不需要加上一般常用抗反射層,而且可以使用任意材料。同樣的,極化轉換器在操作頻率下,可以將線性極化波轉換成完美的圓形極化波且沒有反射。

使用等效電路的觀點在解決多層介質的極化轉換的問題是非常方便的。在此觀點中,各向異性介質可以當作變壓器,旋光性介質可以當作是傳輸線,如此微波電路中的阻抗匹配的觀念可以用來設計極化轉換器。藉著等效電路的觀念,配合基因演算法我們有效的增加了極化轉換器的極化頻寬。分別以三層及五層當作例子,其極化頻寬可以達到約84.1%及92.8%。
Abstract
This dissertation investigates the design of a quarter-wave polarization transformer and presents some options for a high-performance polarizer in both normally incident and obliquely incident cases. Then, a novel concept for investigating polarization transformation is presented. Based on this concept, the broad axial ratio bandwidth polarizer, composed by anisotropic and chiral media, is accomplished using genetic algorithm.

For the normally incident case, we present some methods to eliminate the reflection for designing novel high-performance polarizer in two situations. The polarizers provide perfect linear-to-circular polarization transformation without insertion loss at the center frequency. Then, two novel designs are presented for a high-performance quarter-wave polarizer in the obliquely incident case. In these designs, the material parameters of uniaxial media can be arbitrary. The polarizer is achieved by using only one layer of the uniaxial anisotropic medium without conventional anti-reflection coatings because of the unique property of the oblique incidence. The polarizer can produce a perfect linear-to-circular polarization transformation without any insertion loss at the center frequency.

The equivalent circuit concept is presented to study polarization transformations. This concept is more convenient when dealing with polarization transformation problems in multiple layers. The anisotropic medium and the chiral medium can be regarded as circuit elements. Specifically, we show that anisotropic media can be seen as transformers and chiral media as transmission lines. Once the equivalent circuits are determined, the microwave network theory can be used to investigate the polarization transformation. An example is used to demonstrate the transformation from the horizontally polarized wave to the circularly polarized wave employing the equivalent circuit concept. Based on the equivalents concept, we present broad axial ratio bandwidth quarter-wave polarizer composed of mutilayered uniaxial anisotropic media and chiral media using genetic algorithm. In our design, the constitutive parameters of materials can be arbitrary. This broadband polarizer can be realized through the adjustment of the thickness of materials. The nearly optimal and suitable thickness of each cell is determined by using a genetic algorithm. Two numerical examples with three and five cells are presented to validate the design. The axial ratio bandwidths of about 84.1% and 92.8% can be achieved, more than double the maximum theoretical bandwidth for the case of the single uniaxial anisotropic slab.
目次 Table of Contents
摘要 II
Abstract III
Contents V
List of Figures VII
List of Tables IX
Chapter 1 Introduction 1
1-1 Research motivations 1
1-2 Overview 3

Chapter 2 Properties of the anisotropic media 4
2-1 Categories of media 4
2-2 Plane wave in anisotropic media 6
2-3 Reflection and transmission at a plane boundary 12
2-3-1 A plane wave propagates from an isotropic medium to an anisotropic medium 12
2-3-2 A plane wave propagates from an anisotropic medium to an isotropic medium 16
2-4 Plane wave in chiral media 20

Chapter 3 Design of a high performance quarter-wave polarizer 22
3-1 Polarization transformation without reflection in normal incident case 22
3-1-1 Two-transmission-line model 22
3-1-2 Eliminating reflection of the quarter-wave polarizer 23
3-2 Polarization transformation without reflection in oblique incident case 37
3-3 Examples 42

Chapter 4 Enhancement of the axial ratio bandwidth of a quarter-wave polarizer 46
4-1 State of polarization on plane 46
4-2 Jones calculus and its application to propagation in polarization with anisotropic media 51
4-3 Equivalent circuit representation of anisotropic media and chiral media in the polarization transformations 55
4-3-1 Equivalent circuits 55
4-3-2 Example 58
4-4 Axial ratio bandwidth enhancement for quarter-wave polarizer using genetic algorithm 60
4-4-1 Multiple-population genetic algorithm 60
4-4-2 Fitness function and search space of the MPGA 62
4-4-3 Numerical examples 67

Chapter 5 Conclusions 69

Bibliography 71
Publication list 74
參考文獻 References
[1.] A. J. Viitanen, and I. V. Lindell, “Uniaxial chiral quarter-wave polarization transformer,” Electron. Lett., 1993, 29, (12), pp. 1074-1075
[2.] H. S. Kirschbaum, and S. Chen, “A method of producing broad-band circular polarization employing an anisotropic dielectric,” IRE Trans. Microw. Theory Tech., 1957, pp. 199-203
[3.] A. Sihvola, Electromagnetic mixing formulas and applications, London: IEE, 1999
[4.] A. Yarive, Optical Electronics in Modern Communications, 5th edn., New York: Oxford University Press, 1997
[5.] M. Richhariar, Satellite communication systems: Designed principle, 2nd edn., Old Tappan, N. J.: MacMillan Press, 1999
[6.] A. G. Fox,: “An adjustable wave-guide phase changer,” IRE Proc. 1947, (12), pp. 1489-1498
[7.] L. Young,, L. A. Robinson, and C. A. Hacking, “Meander-line polarizer,” IEEE Trans. Antennas Propag., 1973, (5), pp. 376-378
[8.] R. S. Chu, and K. M. Lee, “Analytical model of a multilayered meander-line polarizer plate with normal and oblique plane-wave incident,” IEEE Trans. Antennas Propag., 1987, AP-35, (6), pp. 652-661
[9.] T. K. Wu, “Meander-line polarizer for arbitrary rotation of linear polarization,” IEEE Microwave and Guided wave Letters, 1994, 4, (6), pp. 199-201
[10.] J. A. Kong, Electromagnetic wave theory, 2nd edn. New York: John Wiley & Sons, 1986
[11.] I. V. Lindell, and A. J. Viitanen, “Plane wave propagation in uniaxial bianisotropic medium,” Electron. Lett., 1993, 29, (2), pp. 150–152
[12.] L. Escoubas, M. Loli, J. J. Simon, H. Giovannini, F. Flory, F. Lemarquis, S. Enoch and G. Berginc, “Design and fabrication of biperiodic AR gratings forinfrared, in Advances in Optical Thin Films,” C. Amra, N. Kaiser, H. A. Macleod, eds, Proc. SPIE, pp. 64-70, 2004
[13.] I. J. Hodgkinson, “Linear and circular from birefringence of coatings fabricated by serial bideposition,” Part. of the SPIE Conference on Engineered Nanostructural Films and Materials, pp. 119-132, July, 1999
[14.] K. C. Yeh and C. H. Liu, Theory of Ionospheric Waves, Academic Press, 1972
[15.] Y. C. Huang, A study of the transformation bandwidth and the thickness sensitivity of the anisotropic-slab LP to CP polarizer, thesis in National Sun Yat-sen University, 2003.
[16.] A. Lakhtakia, V. K. Varadan and V. V. Varadan, Time-Harmonic Electromagnetic Fields in Chiral Medi,. Berlin: Springger-Verlag, 1989.
[17.] A. Kusunoki and M. Tanaka, “Design consideration of polarization-transformation filters using a genetic algorithm,” IEICE Trans. Electron., 2003,E86-C, pp. 1657-1664
[18.] I. V. Lindell, Sihvola A. H., Tretyakov S. A. and Viitanen A. J., Electromagnetic waves in chiral and bi-isotropic media, Artech House, 1994
[19.] H. Mott, Antenna for Radar and Communications: A Polarimetric Approach, John Wiley & Sons, 1992
[20.] D. K. Cheng, Field and wave electromagnetics. 2nd edn., Addison-Wesley, 1989
[21.] Y. C. Hunag,and K. H. Lin, “A study of the transformation bandwidth and the thickness sensitivity of the anisotropic-slab LP to CP polarizer,” Radio Sci., 2003, 38, (1), 1012, doi:10.1029/2002RS002611
[22.] R. C. Jones, “New calculus for the treatment of optical systems,” J. Opt. Soc. Am., 1941, 31, pp. 488–500
[23.] H. C. Chen, Theory of electromagnetic waves a coordinate-free approach, Taiwan: McGraw-Hill, 1983
[24.] H. G. Booker, V. H. Rumsey, G. A. Deschamps, M. L. Kales and J. I. Bohnert, “Techniques for handling elliptically polarized waves with special reference to antennas,” Proc. IRE, pp. 533–552, 1951
[25.] H. L. Su and K. H. Lin, “Achieving LP to CP polarization transformation without reflection by using a uniaxial anisotropic dielectric wave plate,” in Proc. APMC, 2002, vol. 3, pp. 1549–1552
[26.] D. M. Pozar, Microwave Engineering, CA: Addison Wesley, 1993
[27.] H. L. Su and K. H. Lin, “Equivalent circuit representation of anisotropic media and chiral media and its application in polarization transformations,” IEEE Microw. Compon. Lett., 2005, vol.15, pp. 57-58
[28.] R. Tanese, “Distributed genetic algorithms,” paper presented in Proceedings of the third International Conference on Genetic Algorithm, San Mateo, CA, 1989
[29.] W. N. Martin, J. Lienig, and J. P. Cohoon, Population structures: Island (migration) models: Evolutionary algorithms based on punctuated equilibria, in Handbook of Evolutionary Computation, C6.3:1-C6.3:16, Inst. Phys. Publ., New York: Oxford Univ. Press, 1997
[30.] J. H. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, 1975
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code