Responsive image
博碩士論文 etd-0613113-113905 詳細資訊
Title page for etd-0613113-113905
論文名稱
Title
斜坡底床上碎波後波形演變之研究
An evolution of breaking wave on sloping bottoms
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-14
繳交日期
Date of Submission
2013-07-31
關鍵字
Keywords
平緩斜坡、碎波波形、溢波、捲波、拋射運動
plunging, spilling, free-body, projectile, waves breaking
統計
Statistics
本論文已被瀏覽 5753 次,被下載 858
The thesis/dissertation has been browsed 5753 times, has been downloaded 858 times.
中文摘要
本文探討二度空間中於緩斜坡底床上,自由表面規則前進重力波由深水至淺水傳遞時因受水深淺化影響,使得波高變大波長變小波速變慢及波形變得不對稱。於波形演變期間,波峯區域部份的流體質點其水平速度分量會大於波速而逸出波面發生波浪碎波。引用Chen et al.(2005)之沿斜坡底床前進波的流場解,並將波浪碎波判定條件與碎波後流體質點以自由落體拋射運動方程式等條件納入,繼續來探討前進重力波於平緩斜坡底床上波浪碎波之後瞬間波形之連續演變趨勢情形。
本研究同時在國立成功大學水工試驗所斷面水槽(長21公尺、寬0.5公尺、高0.7公尺),採斜坡坡度 及 與水深37.6公分及40公分與週期0.8秒至3秒與波高4公分至8公分等條件進行實驗,並依據在不同碎波點處於水槽前佈設高速攝影機(MS55K2,解析度1280*1020,拍攝最大速率每秒1020張),並將高速攝影機所拍攝獲取影像照片資料經由校正格板(厚1mm, 面積0.9m×0.625m,格點間距5mm×5mm)轉換後,再與相同條件下之理論解析所得結果進行驗證比對。
藉由本文之理論解析與實驗驗證比對,可將波浪傳遞於斜坡底床上的淺化至碎波之後,呈現的捲波波形(plunging wave)或溢波波形(spilling wave)之波形變化演變趨勢情形予以清楚的描述,同時也證明了本文線性理論解析波浪碎波之後瞬間波形之變化是頗為準確的。再者,由於在波浪碎波之後其波形變化之理論解析甚少,故以本研究對於碎波後之波形變化及其波形捲曲包絡的程度及落下的情形,能用來預測描述海波碎波後之情形。
關鍵詞:平緩斜坡、碎波波形、拋射運動、捲波、溢波
Abstract
This thesis discusses the plunging or spilling wave breaking profiles for the progressive water waves propagating on gentle sloping bottoms. Due to the shoaling effect, the wave height will increase and the wave length will shorten as well as the asymmetry of wave profile will appear. As the wave continues to move to the shore, the wave velocity will decrease and the wave profile will be pushed to steep in the vertical direction. As the slope of wave profile approaches to large, the horizontal velocity of the water particle at the wave crest will larger than wave phase velocity and the wave breaking will occur and move forward in the free-body projectile motion.The theoretical solution derived by Chen at al. (2005) for the progressive waves propagating on sloping bottoms, the wave breaking criteria and the equation of the particle projectile motion after the wave breaking are included to discuss the continuous variations of wave profile for the plunging or spilling breaking waves.
A laboratory experiment is conducted in order to validate the theoretical wave breaking profile on sloping bottoms with measures. Wave breaking profiles can be verified obtained by the theoretical solution and experimental measurements. The experimental measurements were carried out in a glass-walled wave tank, 21m×0.7m×0.5m, in Tainan Hydraulics Laboratory , National Cheng Kung University. A High-Speed camera was set up in front of the glass-wall at the different breaking point locations depending on the initial wave conditions. This method allows to successively capturing the wave breaking profiles. Images were captured by a High-Speed camera (MS55k2, Canadian Photonic Labs Inc.), which has a 1280*1080 pixel resolution and maximum framing rate 1020 frames per second (fps). A transparent acrylic-plastic sheet (0.9 m×0.625m) was calibrated at 1-mm intervals in 5 mm×5 mm grids. Its function is a virtual grid in the picture. The experiments were conducted at two different bottom slope ( ,1/20) and two different water depth (d=37.6m, 40.0cm) and various wave periods from =0.8sec~3.0sec). The range of incident wave heights were from 4 cm~8cm.
According to the comparison results between the theoretical solution and experimental data, the wave profile evolution of plunging or spilling breaking wave on sloping bottoms can be described. Meanwhile, it is also proved that the instantaneous wave profiles after the breaking wave is good agreement. The duration of the overturning wave is less known by the analytical solution. The present theory can well describe the wave shoaling, as well as the occurrence of breaking wave and wave overturning, similar to the plunging jet in the breaking water waves over sloping bottom. Comparing the sequence of computed wave breaking profiles with snapshots of breaking wave behavior over a sloping bottom captured by the high-speed camera shows a good agreement of the theoretical wave breaking profile with laboratory measurements. The breaker jet creating a forward moving jet is well observed in the present theoretical results. This indicates that the theoretical solution is accurate for modeling such post-breaking waves.
Keyword:free-body,projectile,waves breaking,plunging,spilling
目次 Table of Contents
論文審定書
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 v
表目錄 vii
圖目錄 viii
符號說明 xiii
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 2
1-3 本文組織架構 4
第二章 波動系統描述 6
2-1 控制方程式及邊界條件 6
2-2 波動系統之理論解析 8
2-3 轉換至Lagrangian系統 14
第三章 前進波碎波後瞬間波形變化 21
3-1 前進波浪之碎波 21
3-2 前進波碎波特性分析討論 26
3-3 前進波碎波後瞬間波化 30
第四章 試驗驗證 34
4-1 試驗設備與儀器 34
4-2 試驗配置 39
4-3 試驗方法步驟及條件 40
4-4 試驗結果與討論 42
第五章 結論與建議 98
5-1 結論 98
5-2 建議 99
參考文獻 100
參考文獻 References
1. 陳陽益、湯麟武(1992),“平緩坡度底床上前進的表面波”,第十四屆海洋工程研討會論文集,1頁-22頁。
2. 陳陽益(1994a),“等深水中非旋轉性的自由表面前進重力波之Lagrangian方式的攝動解析”,第十六屆海洋工程研討會論文集,A1頁-A29頁。
3. 陳陽益(1994b),“等深水中非旋轉性的自由表面重力駐波之Lagrangian方式的攝動解析”,第十六屆海洋工程研討會論文集,A30頁-A59頁。
4. 陳陽益(1995),“Lagrangian 與 Eulerian 解下前進重力波與重力駐波的動力特性”,第十七屆海洋工程研討會論文集,19頁-36頁。
5. 陳陽益(1996),“非旋轉性前進波的 Eulerian 與 Lagrangian 解間的轉換性”,第十八屆海洋工程研討會論文集,1頁-13頁。
6. 陳陽益(1997),“平緩坡度底床上前進的表面波”,第十九屆海洋工程研討會論文集,112頁-121頁。
7. 陳陽益、張富東(1999),“平緩坡度底床上前進波的試驗研究”,第二十一屆海洋工程研討會論文集,165頁-174頁。
8. 陳陽益(2003 I),“非陡坡底床上前進波的非線性解析:I. 系統化攝動展開模式”,第二十五屆海洋工程研討會論文集,39頁-48頁。
9. 陳陽益(2003II),“非陡坡底床上前進波的非線性解析:II. 至 階的解析解及印證”,第二十五屆海洋工程研討會論文集,49頁-58頁。
10. 曾文哲、陳陽益(2004),碎波衝量之研究,第26屆海洋工程研討會論文集,第329頁-337頁。
11. 曾文哲、陳陽益、陳冠宇(2005),Lagrangian 系統下碎波衝量之研究,第27屆海洋工程研討會論文集,第589頁-597頁。
12. 許弘莒(2005) “斜坡底床上前進波的非線性解析”,國立成功大學論文。
13. 陳陽益、楊貴森、李孟學(2008),“斜坡底床上碎波前後波形之研究”,第三十屆海洋工程研討會論文集 21頁-26頁。
14. 陳陽益、許弘莒、李孟學、楊貴森(2009),“非陡斜坡底床上前進波之非線性Eulerian解與Lagrangian解間的轉換及至波浪變形至碎波(3/3)”,第三十一屆海洋工程研討會論文集 85頁-90頁。
15. 李政達(2008) “波流場中質點運動特性之試驗研究”,國立中山大學論文。
16. 廖奕鈞(2011) “波浪作用下啟動沙量試驗研究”,國立中山大學論文。
17. 林楚佑(2011) “Lagrangian 系統下孤立波特性之解析”,國立中山大學論文。
18. Biesel, F. (1952) “Study of wave propagation in water of gradually varying depth. Gravity Waves,” U.S. National Bureau of Standards, Circular Vol.521, pp. 243-253.
19. Bridges, T.J. (2009), “Wave breaking and the surface velocity field for three-dimensional water waves,” Nonlinearity, 22, pp. 946-953.
20. Chamberlain, P.G., Porter, D. (1995) “The Modified Mild-Slope Equation,” Journal of Fluid Mechanics, Vol. 291, pp. 393-407.
21. Chen, Y.Y., Hwung, H.H., Hsu, H.C. (2005) “Theoretical analysis of surface waves propagation on sloping bottoms part 1,” Wave Motion, Vol. 42, pp. 335-351.
22. Chen, Y.Y., Hsu, H.C., Chen, G.Y., Hwung, H.H. (2006) “Theoretical analysis for surface waves propagation on sloping bottoms, Part 2,” Wave Motion, Vol. 43, pp. 339-356.
23. Chen, Y.Y., Hsu, H.C., Chen, G.Y., (2010.) “Lagrangian experiment and solution for irrotational finite-amplitude progressive gravity waves at uniform depth,” Fluid Dynamics Research, Vol. 42, pp. 045501.
24. Chen, Y.Y., Hsu, H.C., Chang, H.K. (2012a) “The irrotational progressive gravity waves propagating on uniform currents in Lagrangian analysis and experiments Part1. Theoretical analysis,” Acta Physics Sinica, Vol. 61, pp. 034702.
25. Chen, Y.Y., Lin, C.Y., Li, M.S., Lee, C.T. (2012b) “The irrotational progressive gravity waves propagating on uniform currents in Lagrangian analysis and experiments Part2. Experimental verification,” Acta Physics Sinica, Vol. 61, pp. 034703.
26. Chen, Y.Y., Li, M.S., Hsu, H.C. (2012c) “Theoretical and experimental study of particle trajectories for nonlinear water waves propagating on a sloping bottom,” Philosophical Transactions of the Royal Society A, Vol. 370, pp. 1543-1571.
27. Chu,V.H., Mei, C.C. (1970) “On slowly-varying Stokes waves,” Journal of Fluid Mechanics, Vol. 41, pp. 873–887.
28. Constantin, A. (2001) “Edge waves along a sloping beach,” Journal of Physics A: Mathematical and General, Vol. 34, pp. 9723-9731.
29. Deo, M.C., Jagdale, S.S. (2003) “Prediction of breaking waves with neural networks,” Ocean Engineering, Vol. 30, pp. 1163-1178.
30. Ehrenmark, U.T. (1998), “Oblique wave incident on a plane beach: the classical problem revisited,” J. Fluid Mech. Vol. 368, pp. 291-319.
31. Ehrnström, M., Wahlén, E. (2008) “On the fluid motion in standing waves,” Journal of Nonlinear Mathematical Physics, Vol. 15, pp. 74-86.
32. Elgar, S., Guza, R.T. (1985) “Shoaling gravity waves: comparisons between field observations. Linear theory and a nonlinear model,” Journal of Fluid Mechanics, Vol. 158, pp. 47-70.
33. Gaillard, D.D. (1904) “Wave action in relation to engineering structure,” U.S. Army, Corps of Engineers, Beach Erosion Board, Technical Report, No. 13.
34. Galvin, C.J. (1968) “Breaker type classification on three laboratory beaches,” Journal of Geophysical Research, Vol. 73, pp. 3651-3659.
35. Gerstner, F.J. (1802) “Theorie de wellen,” Abh. d. K. bohm. Ges. Wiss. reprinted in Ann der Physik, Vol. 32, pp. 412-440.
36. Goda, Y. (1974) “New wave pressure formula for composite breakwater,” Proceedings of 14th International Conference on Coastal Engineering, pp. 1702-1720.
37. Goda, Y. (1975) “Irregular wave deformation in the surf zone,” Coastal Engineering In Japan, Vol. 18, pp. 13-26.
38. Goda, Y. (2004) “A 2-D random wave transformation model with gradational breaker index,” Coastal Engineering Journal, Vol. 46, pp. 1-38.
39. Goda, Y. (2010) Reanalysis of regular and random breaking wave statistics, Coastal Engineering Journal, Vol. 52, pp. 71-106.
40. Hamada, T. (1951) “Breakers and beach erosion, Port and Harbor Research Institute,” Ministry of Transportation, Japan, Vol. 165.
41. Hansen, J.B. (1990) “Periodic waves in the surf zone: Analysis of experimental data,” Coastal Engineering, Vol. 14, pp. 19-41.
42. Hu, D.M. (1985) “Analytical solution of linear wave potential function on sloping bottom,” Acta Oceanological Sinica, Vol. 4, pp. 539-533.
43. Hsu, H.C., Chen, Y.Y., Wang, C.F. (2010) “Perturbation analysis of the short-crested waves in Lagrangian coordinates,” Nonlinear Analysis Series B: Real World Applications, Vol. 11, pp.1522-1536.
44. Hudspeth, R. T. and Sulisz, W. (1991), “Stokes drift in two-dimensional wave flumes,” J. Fluid Mech, 230, pp. 209-229.
45. Iversen, H.W. (1952) “Waves and breakers in shoaling water,” Proceedings of 3rd International Conference on Coastal Engineering, pp. 1-12.
46. Iwagaki, Y., Sakai, Tsukioka, T.K., Sawai, N. (1974) “Relationship between vertical Distribution of water particle Velocity and type of breaker on beachs,” Coastal Engineering In Japan, Vol. 17, pp. 51-58.
47. Keller, J. B. (1958), “Surface waves on water of non-uniform depth,” J. Fluid Mech., Vol. 4, pp. 607-614.
48. Kennedy, A.B., Chen, Q., Kirby, J.T., Dalrymple, R.A. (1999), “Boussineaq modeling of wave transformation, breaking, and run-up, I, 1D,” Journal of Waterways, Port, Coastal and Ocean Engineering, Vol. 126, pp. 39-47.
49. Le Méhauté and L. Webb (1964), “Periodic gravity wave over a gentle slope at a third order of approximation,” Proc. 9th Conf. on Coastal Eng. ASCE, pp.23-40.
50. Le Méhauté B., Koh, R.C.Y. (1967) “On the Breaking of waves arriving at an angle to the shore,” Journal of Hydraulic Research, Vol. 5, pp. 67-88.
51. Lewy, H. (1946), “Water waves on sloping beaches,” Bulletin of the American Mathematical Society, Vol. 52, pp. 737-775.
52. Li, M.S.,Chen, Y.Y., Hsu, H.C.,A,T.F. (2013)“Experimental and Lagrangian modeling of nonlinear water waves propagation on a sloping bottom,” Ocean Engineering, Vol. 64, pp. 36-48.
53. Li, R., Wang, H. (1999) “Nonlinear Effect of Wave Propagation in Shallow Water,” China Ocean Engineering, Vol. 13, pp. 109-114.
54. Liu, P.L.F., Dingemans, M.W. (1989) “Derivation of the third-order evolution equations for weakly nonlinear water waves propagating over uneven bottoms,” Wave Motion, Vol. 11, pp. 41-64.
55. Longuet-Higgins, M.S. (1953) “Mass transport in water waves.” Philosophical Transactions of the Royal Society A, Vol. 245, pp. 533-581.
56. Longuet-Higgins, M.S., Stewart, R.W. (1964) “Radiation stress in water wave – a physical discussion with applications,” Deep Sea Research, Vol. 11, pp. 3-26.
57. Longuet-Higgins M.S. (1980), “On the forming of sharp corners at a free surface,” Proc. R. Soc. London. Ser. A, 360, pp. 471-488.
58. Longuet-Higgins M.S. (1981), “On the overturning of gravity waves,” Proc. R. Soc. London. Ser. A, 376, pp. 377-400.
59. Longuet-Higgins, M.S. (1986) “Eulerian and Lagrangian aspects of surface waves, ” Journal of Fluid Mechanics, Vol. 173, pp. 683-707.
60. Lowell, S.C. (1949), “The propagation of waves in shallow water,” Comm. Pure Appl. Math., Vol. 2, pp. 275-291.
61. Mason, M.A. (1941) “A study of progressive oscillatory waves in water,” U.S. Army, Corps of Engineers, Beach Erosion Board, Technical Report, No. 1.
62. Mei, C.C. (1983), “The Applied Dynamics of Ocean Surface Waves,” pp. 420-426, John Wiely.
63. Miche, A. (1944) “Mouvements ondulatoires de la mer en profondeur constante ou décroissante, ” Annales des ponts et chaussees , pp. 25-78, 131-164, 270-292, 369-406.
64. Naciri, M., Mei, C.C. (1993) “Evolution of short gravity waves on long gravity waves, ” Physics of Fluids A , Vol. 5, pp. 1869-1878.
65. Nwogu, O. (1993) “Alternative form of Bousssinesq equations for nearshore wave propagation,” Journal of Waterways, Port, Coastal and Ocean Engineering, Vol. 119, pp. 618-638.
66. Peters, A. S. (1952), “Water waves over sloping beaches and the solution of a mixing boundary value problem for in a sector,” Commun. Pure Appl. Math. 9, pp. 443-493.
67. Piedra-Cueva, I. (1995), “Drift velocity of Spatially decaying waves in a two-layer viscous system,” J. Fluid Mech, 299, pp. 217-239.
68. Pierson, W.J. (1962) “Perturbation analysis of the Navier-Stokes equations in Lagrangian form with selected linear solution,” Journal of Geophysical Research, Vol. 67, pp. 3151-3160.
69. Pomeau Y., Le Berre M., Guyenne P. and Grilli S. (2008), “Wave-breaking and generic singularities of nonlinear hyperbolic equations,” Nonlinearity, 21 T61-T79.
70. Porter, D., Staziker, D.J. (1995), “Extensions of the Mild-Slope Equation,” Journal of Fluid Mechanics, Vol. 300, pp. 367-382.
71. Rankine, W.J.M. (1863) “On the exact form of waves near the surface of deep water,” Philosophical Transactions of the Royal Society of London, Vol. 153, pp. 127-138.
72. Rattanapitikon, W., Shibayama, T. (2000) “Verification and modification of breaker height formulas,” Coastal Engineering Journal, Vol. 42, pp. 389-406.
73. Rienecker, M.M. and Fenton, J.D. (1981), “A Fourier approximation method for steep water waves,” Journal of Fluid Mechanics, Vol. 140, pp. 119-137.
74. Sanderson, B. (1985) “A Lagrangian solution for internal waves,” Journal of Fluid Mechanics, Vol. 152, pp. 191-137.
75. Seyama, A., Kimura, A. (1988) “The measured properties of irregular wave breaking and wave height change after breaking on slope,” Proceedings of 21st International Conference on Coastal Engineering, pp. 419-432.
76. Smith, J. M., Kraus, N. C. (1990) “Laboratory study on macro-features of wave breaking over bars and artificial reefs,” Technical Report CERC-90-12, WES, US Army Corps of Engineers.
77. Stoker, J.J. (1947), “Surface waves in water of variable depth,” Quart. Appl. Math. Vol. 5 ,pp.1-54.
78. Street, R.L., Camfield F.E. (1966) “Observations and experiments on solitary wave deformation,” Proceedings of 10th International Conference on Coastal Engineering, pp. 284-301.
79. Sunamura, T., Horikawa, K. (1974) “Two-dimensional beach ransformation due to waves,” Proceedings of 14th International Conference on Coastal Engineering, pp. 920-938.
80. Sunamura, T. (1980) “A laboratory study of offshore transport of sediment and a model for eroding beaches,” Proceedings of 17th International Conference on Coastal Engineering, pp. 1051-1070.
81. Sunamura, T. (1983) “Determination of breaker height and depth in the field,” Annual Report of the Institute of Geosciience, Universityof Tsukuba, Vol. 8, pp. 53-54.
82. Suquet, F. (1950) “Experimental study on the breaking of waves,” La Houille Blancha, Vol. May to June, pp. 362.
83. Sverdrup, H. U. and Murk, W. H. (1944), “Breaker and surf,” U.S. Navy department, Hydrographic Office. Publication No. 234.
84. Tang, L. W. (1966) “Coastal Engineering researches on the western coast of Taiwan,” Proceedings of 10th International Conference on Coastal Engineering,, pp. 1274-1290.
85. Tanimoto, K., Nakamura, S., Zhao, Q. (1996) “Evaluation of wave motions and radiation stress on steep slope,” Proceedings. 43th Japan Coastal Engineering Conference, pp. 26-31.
86. Tsai, C.P., Chen, H.B., Hwung, H.H., Hwuang, M.J. (2005) “Examination of empirical formulas for wave shoaling and breaking on steep slopes,” Ocean Engineering, Vol. 32, pp. 469-483.
87. Yang, K.S.,Chen, Y.Y.,Li, M.S.,Hsu, H.C.(2013)“Theoretical and experimental study of breaking wave on sloping bottoms,” China Ocean Engineering,(submitted).
88. Zhao, Q., Nakamura, S., and Tanimoto, K. (1996) “Distribution of particle velocities due to waves on very deep slope bottom,” 10th Congress of IAHR-APD, pp. 365-372.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code