Responsive image
博碩士論文 etd-0613115-170350 詳細資訊
Title page for etd-0613115-170350
論文名稱
Title
碲化鉍拓樸絕緣體做為飽和吸收體的固態脈衝雷射研製
Pulsed Solid-State Laser Using Topological Insulator Bi2Te3 Saturable Absorber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-12
繳交日期
Date of Submission
2015-07-13
關鍵字
Keywords
拓樸絕緣體、被動脈衝固態雷射、非線性可飽和吸收特性、可飽和吸收體、碲化鉍、水熱剝離法
Topological insulator, Bi2Te3, Hydrothermal exfoliation, Saturable absorber, Passive solid-state pulsed laser, Nonlinear characteristic of saturable absorption
統計
Statistics
本論文已被瀏覽 5675 次,被下載 388
The thesis/dissertation has been browsed 5675 times, has been downloaded 388 times.
中文摘要
在本論文中,我們利用鉍系拓樸絕緣體作為飽和吸收體探討了實現高效率高功率固態脈衝雷射的可能性。首先,我們討論水熱剝離法流程和剝離後樣品的SEM、TEM、AFM和XRD等實驗分析,證實奈米尺寸下飽和吸收體製備方式的優良與可行性;其次,利用製備好的碲化鉍樣品實作被動Q開關脈衝雷射,並採用折疊共振腔體方式濾掉多餘的泵浦光源達到穩定的Q開關脈衝輸出,實現在1.0微米波長中最高超過五個微焦脈衝能量,這是利用拓樸絕緣體作為飽和吸收體之脈衝雷射中最大脈衝能量輸出;最後,藉由不同腔體設計的改良,分別去比較1.06和1.34 µm波段下不同覆蓋率的雷射最佳優化結果,其中1.34 µm波段下我們實現了輸出功率326 mW、脈衝能量2.8 µJ和脈寬小於微秒到673 ns的雷射輸出,這也是該波段最大的平均輸出功率結果;此外,並首度報導熱效應在腔內對飽和吸收體的影響,利用光學矩陣模擬腔內的光班行進方式並透過提高光班面積大小後,讓越多的拓樸絕緣體能做貢獻進而增大脈衝能量和功率,而我們更發現拓樸絕緣體的低飽和吸收特性下伴隨著泵浦功率提高會導致重複率劇烈上升,且拓樸絕緣體本身也為快飽和吸收體,綜合上述現象會使泵浦功率提高到一定程度會使Q開關脈衝會呈現CW狀態。
Abstract
In this thesis, the characteristics of high power solid-state pulsed laser by using topological insulator Bi2Te3 saturable absorber were investigated. First, the high yield of Bi2Te3 nanosheets were successfully fabricated by hydrothermal exfoliation, which had been certificated with X-ray diffraction, raman spectrum characterizations, energy-dispersive X-ray spectroscopy, atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. All the results confirms anvantanges and feasibility of convient route for producing saturable absorber. This is beneficial to further commercial solid-state laser applications.
In addition, we demonstarted passive solid-state pulsed laser by exfoliated topological insulators Bi2Te3 and reliazed stable Q-switching operation by folded resonator in order to prevent residual pumping power. The obtained pulse energy is over than 5 μJ at 1.06 µm. This is the greatest value in TI-based solid-state laser to our best knowledgement. Finally, by virtue of improved resonator, the optimized Q-switching performances compare favorably with different coverage of saturable absorber at 1.06 µm and 1.34 µm. We have experimentally demonstrated that output power of 326 mW、pulse energy of 2.8 μJ and pulse duration of 673 ns at 1.34 µm waveband. Furthermore, we have displayed the influence of thermal effect on saturable absorber within resonator for the first time. By analysing the analogue process of beam waist and transforming the position of saturable saturaber within resonator, it will reach the higher pulse power and energy on account of contributions to more topological insulators. Moreover, we oberserved that low threshold characteristics of topological insulators as fast saturable absorber accompanied with increasing pumping power would lead to excessively high repetition rate. Above following discussion, Q-switching pulsed operation would convert into condition of continuous wave when it raised up to certain level of pumping power
目次 Table of Contents
中文審定書............................i
英文審定書........................... ii
誌謝 ..............................iii
摘要.............................. v
Abstract ............................ vi
目錄 ..............................viii
圖次 .............................. x
表次 .............................. xiii
第一章 緒論...........................1
1.1. 前言...........................1
1.2. 研究動機.........................2
1.3. 論文架構.........................3
第二章 拓樸絕緣體的光學特性與可飽和吸收體製備..........4
2.1. 拓樸絕緣體........................4
2.1.1. 拓樸絕緣體之概述.....................4
2.1.2. 能帶結構.........................7
2.1.3. 二維電子氣拓樸絕緣體-碲化鉍的原子結構及應用........9
2.2. 拓樸絕緣體的非線性飽和吸收特性..............12
2.2.1. 對光波段吸收特性.....................12
2.2.2. 非線性飽和吸收機制....................14
2.2.3. 調制深度、飽和光強度和通量................17
2.3. 熱損傷閾值........................19
2.4. 碲化鉍飽和吸收體的製備..................21
第三章 拓樸絕緣體奈米薄片的水熱剝離法製備與特性之研究......25
3.1. 樣品製備流程.......................25
3.2. 拓樸絕緣體的掃描式和穿透式電子顯微鏡分析.........29
3.2.1. 實驗樣品條件與參數....................29
3.2.2. 實驗結果與分析......................31
3.3. 拓樸絕緣體碲化鉍的X射線繞射譜與拉曼光譜分析.......37
3.4. 不同過濾方式下的樣品尺寸大小分析.............39
3.5. 總結...........................41
第四章 奈米薄片拓樸絕緣體碲化鉍之Q開關雷射特性和共振腔體改良..42
4.1. 固態雷射共振腔體原理和設計................42
4.2. 固態雷射折疊共振腔體穩態出光和優化............45
4.3. 1.06µm下Q開關雷射實驗研究................52
4.3.1. 實驗樣品條件與參數....................52
4.3.2. 實驗結果與分析......................55
4.4. 總結...........................59
第五章 碲化鉍旋塗製備法之覆蓋率對非特性可飽和吸收研究和Q開關雷射的優化................................60
5.1. 飽和吸收體非線性吸收特性之覆蓋率影響雷射的機制......60
5.2. 不同覆蓋率下碲化鉍對非線性可飽和吸收特性趨勢的影響....62
5.2.1. 實驗樣品條件與參數....................62
5.2.2. 實驗結果與分析......................63
5.3. 1.06 µm波段不同覆蓋率下的Q開關雷射實驗研究........65
5.3.1. 實驗樣品條件與參數....................65
5.3.2. 實驗結果與分析......................66
5.4. 1.34 µm波段不同覆蓋率下的Q開關雷射實驗研究........71
5.4.1. 實驗樣品條件與參數....................71
5.4.2. 實驗結果與分析......................72
5.5. 折疊共振腔內不同位置下熱效應對飽和吸收體的影響......74
5.5.1. 實驗結果與分析......................74
5.6. 總結...........................77
第六章 結論與未來展望......................79
參考文獻............................80
參考文獻 References
[1] T. H. MAIMAN, “Stimulated optical radiation in ruby”, Nature 187. 493 - 494 (1960).
[2] W. Denk, J. H. Strickler and W.W. Webb, “Two-photon laser scanning fluorescence microscopy”, Science. 248, 73-76(1990).
[3] A. Vogel, V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues”, Chemical reviews. 103, 577-644(2003).
[4]C. A. Millard, P. W. Wiseman, D. N. Fittinghoff, K. R. Wilson, J. A. Squier and M. Müller, “Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source ”, Appl. optics. 38, 7393-7397 (1999).
[5] R. G. Rafael and M. Eric, “Femtosecond laser micromachining in transparent materials”, Nature photonics. 2, 219-225(2008).
[6] H. Misawa and J. Saulius “3D laser microfabrication: principles and applications” John Wiley & Sons, 2006.
[7] G. John “Optical communication systems” Prentice-Hall, 1984.
[8] J. M. Sharee, M.Nikolaj and V. Yurii, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides”, Optics express. 11, 2927-2939 (2003)
[9] L. Zhengqian, L. Chun, H. Yizhong, W. Duanduan, W. Jianyu, X. Huiying, C. Zhiping, L. Zhiqin, S. Liping and W. Jian, “Topological-insulator passively Q-switched double-clad fiber laser at 2 µm wavelength”, IEEE J. Sel. Topics Quantum Electron. 20, 1-8(2014).
[10] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko and A. C. Ferrari, “Graphene mode-locked ultrafast laser”, ACS Nano. 4, 803-810 (2010).
[11] G. J. Spuhler, R. Paschotta, R. Fluck, B. Braun, M. Moser,G. Zhang, E. Gini, and U. J. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers”, Opt. Soc. Am. B. 16,376–388 (1999).
[12] L. Kornaszewski, G. Maker, G. Malcolm, G. P. A. Butkus, M. Rafailov, E. U. Rafailov and C. J. Hamilton, “SESAM‐free mode‐locked semiconductor disk laser”, Laser & Photonics Reviews. 6, 20-23(2012).
[13] F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. E. Kisel, V. G. Shcherbitsky, N. V. Kuleshov, J. Gao, K. Contag, A. Giesen and U. Keller, “240-fs pulses with 22-W average power from a mode-locked thin-disk Yb: KY (WO 4) 2 laser”, Optics letters. 27, 1162-1164(2002).
[14] F. Bernard, H. Zhang, S. P. Gorza and P. Emplit, “Towards mode-locked fiber laser using topological insulators. In Nonlinear Photonics”, Optical Society of America, A-5(2012)
[15] G. A. Thomas, D. H. Rapkine, R. B. Van Dover, L. F. Mattheiss, W. A. Sunder, L. F. Schneemeyer and J. V. Waszczak,“Large electronic-density increase on cooling a layered metal: doped Bi2Te3”, Phys. Rev. B. 46, 1553-1556(1992).
[16] C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi 2 Se 3 as a mode locker”, Optics express. 20, 27888-27895(2012).
[17] C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber”, Appl. Phys. Lett. 101, 211106 (2012)
[18] J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, K. Grodecki and K. M. Abramski, “Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb 2 Te 3 saturable absorber”, Optical Materials Express. 4, 1-6(2012).
[19] M. Jung, J. Lee, J. Koo, J. Park, Y. W. Song, K. Lee and J. H. Lee, “ A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi 2 Te 3 topological insulator”, Optics express. 22, 7865-7874(2014).
[20] Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu and H. Xu, “1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi 2 Se 3 as a saturable absorber”, Optics express, 21, 29516-29522(2013).
[21] Y. Chen, C. Zhao, S. Chen, J. Du, P. Tang, G. Jiang and D. Tang, “ Large energy, wavelength widely tunable topological insulator Q-switched erbium-doped fiber laser”, IEEE J. Sel. Topics Quantum Electron. 20, 315-322(2014).
[22] P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Shen and D. Fan, “ Topological insulator: saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er: YAG ceramic laser”, IEEE Photonics Journal. 5, 1500707-1500707(2013).
[23] P. Li, G. Zhang, H. Zhang, C. Zhao, J. Chi, Z. Zhao and Y. Yao, “Q-switched mode-locked Nd: YVO4 Laser by Topological Insulator Bi2Te3 saturable absorber”, IEEE Photonics Technology Letters. 26, 1912-1915(2014).
[24] M. Hu, J. Liu, J. Tian, Z. Dou and Y. Song, “Generation of Q-switched pulse by Bi2Se3 topological insulator in Yb: KGW laser”, Laser Physics Letters. 11, 115806(2014).
[25] B. Xu, Y. Wang, J. Peng, Z. Luo, H. Xu, Z. Cai and J. Weng, “Topological insulator Bi 2 Se 3 based Q-switched Nd: LiYF 4 nanosecond laser at 1313 nm”, Optics express. 23, 7674-7680(2015).
[26] Y. J. Sun, C. K. Lee, J. L. Xu, Z. J. Zhu, Y. Q. Wang, S. F. Gao, H. P. Xia and C. Y. Tu, “Passively Q-switched tri-wavelength Yb3+: GdAl3 (BO3) 4 solid-state laser with topological insulator Bi2Te3 as saturable absorber”, Photonics Research. 3, A97-A101 (2015).
[27] M. König, S. Wiedmann, C. Brüne, A Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi and S. C. Zhang, “Quantum Spin Hall Insulator State in HgTe Quantum Wells”, Science. 318, 766-770 (2007).
[28] C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin Hall effect”, Phys. Rev. Lett. 95, 14-30 (2005).
[29] http://news.sciencenet.cn/htmlnews/2010/9/236985.shtm
[30] H. Steinberg, D. R. Gardner, Y. S. Lee and P. H. Jarillo, “Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices”, Nano letters. 10, 5032-5036(2010).
[31] X. Zhang, J. Wang,and S. C. Zhang, “Topological insulators for high-performance terahertz to infrared applications”, Phys. Rev. B. 82, 24-15(2010).
[32] Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma and Q. K. Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit”, Nat. Phys. 6, 584–588 (2010).
[33] H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. L. Qi, S. C. Zhang, Z. X. Shen and Y. Cui, “Aharonov-Bohm interference in topological insulator nanribbons”, Nat. Mater. 9, 225–229 (2010).
[34] D. Teweldebrhan, V. Goyal, M. Rahman and A. A. Balandin, “Atomically-thin crystalline films and ribbons of bismuth telluride”, Appl. Phys. Lett. 96, 1–3 (2010).
[35] L. Ren, X. Qi, Y. D. Liu, G. L. Hao, Z. Y. Huang, X. H. Zou, L. W. Yang, J. Li and J. X. Zhong, “Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route”, J. Mater. Chem. 22, 4921–4926 (2012).
[36] 黃則維,“分子束磊晶成長鉍系(Bi2Se3, Bi2Te3)拓樸絕緣體之超快動力學研究 ", 國立中山大學, 碩士論文 (2014).
[37] H. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang and S.C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface” Nat. Phys. 5, 438-442(2009).
[38] J. E. Moore, “The birth of topological insulators”, Nature. 464, 194–198 (2010).
[40] A. K. Geim, and K. S. Novoselov, “The rise of graphene”, Nat. Mate. 6, 183–191 (2007).
[41] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Schvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials”, Science. 331, 568–571 (2011).
[42] K. P. Loh, Q. Bao, P. K. Ang and J. Yang, “The chemistry of graphene”, J. Mater. Chem. 20, 2277–2289 (2010).
[43] Q. Wang, H. Teng, Y. Zou, Z. Zhang, D. Li, R. Wang, C. Gao, J. Lin, L. Guo and Z. Wei, “Graphene on SiC as a Q-switcher for a 2 μm laser”, Opt. Lett. 37, 395-397 (2012).
[44] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. Loh and D. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers”, Adv. Funct. Mater. 19, 3077–3083 (2009).
[45] H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang and S. C. Zhang, “Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface”, Nature Phys. 5, 438-442 (2009).
[46] G. H. Zhang, H. J. Qin, J. Teng, J. D. Guo, Q. L. Guo, X Dai, Z. Fang and K. H. Wu, “Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3”, Appl. Phys. Lett. 95, 053114 (2009).
[47] J. Maassen and M. Lundstrom, “A computational study of the thermoelectric performance of ultrathin Bi2Te3 films”, Appl. Phys. Lett. 102, 093103 (2013).
[48] Y. L. Chen, J. G. Analytis, J.-H.Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain and Z. X. Shen, “Experimental Realization of a Three-Dimensional Topological Insulator Bi2Te3”, SCIENCE. 325, 178-181(2009).
[49] Yi Zhang, Ke He, Cui-Zu Chang, Can-Li Song, Li-Li Wang, Xi Chen, Jin-Feng Jia, Zhong Fang, Xi Dai, Wen-Yu Shan, Shun-Qing Shen, Qian Niu, Xiao-Liang Qi, Shou-Cheng Zhang, Xu-Cun Ma and Qi-Kun Xue, “Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit”, NATURE PHYSICS. 6, 584-588(2010).
[50] H. J. Noh, H. Koh, S. J. Oh, J. H. Park, H. D. Kim, J. D. Rameau, T. Valla, T. E. Kidd, P. D. Johnson, Y. Hu and Q. Li, “Spin-orbit interaction effect in the electronic structure of Bi2Te3 observed by angle-resolved photoemission spectroscopy”, Europhysics Lett. 81, 57006 (2008).
[51] S. Chen, C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang and S. Wen, “Broadband optical and microwave nonlinear response in topological insulator”, Optical Materials Express. 4, 587-596(2014).
[52] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene”, Science. 320, 1308-1308(2008).
[53] D. Ralf and G. Nimtz, “The properties and applications of the Hg1− xCdxTe alloy system”, Solid-State Physics. Springer Berlin Heidelberg, 119-281(1976).
[54] M. Thomas, F. Xia and P. Avouris, “Graphene photodetectors for high-speed optical communications”, Nature Photonics. 4, 297-301(2010).
[55] M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3”, Nano letters. 12, 3532-3536(2012).
[56] G. J. Spühler, S. Reffert, M. Haiml, M. Moser and U. Keller, “Output-coupling semiconductor saturable absorber mirror”, Appl. Phys. Lett. 78, 2733-2735(2001).
[57] G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers”, JOSA B. 16, 376-388(1999).
[58] J. J. Zayhowski and P. L. Kelley, “Optimization of Q-switched lasers”, IEEE Quantum Electronics. 27, 2220-2225(1999).
[59] G. Spühler, “Compact Ultrafast Solid-state Lasers [PhD Dissertation]”, Zürich:Eidgenössische Techn. Hochshule Zürich(2001).
[60] R. Paschotta, J. Aus der Au, G. J. Spühler, F. Morier-Genoud, R.Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen and U. Keller, “Diode-pumped passively mode-locked lasers with high average power”, Appl. Phys. B. 70, 25-31(2000).
[61] D. A. Wright, “Thermoelectric properties of bismuth telluride and its alloys”, 834-834 (1958).
[62] W. M. Yim and F. D. Rosi, “Compound tellurides and their alloys for peltier cooling—A review”, Solid-State Electronics. 15, 1121-1140(1972).
[63] E. Koukharenko, N. Frety, V. G. Shepelevich and J. C. Tedenac, “Thermoelectric properties of Bi2Te3 material obtained by the ultra-rapid quenching process route”, Journal of alloys and compounds. 299, 254-257(2010).
[64] Slack, A. Glen and D. M. Rowe, “CRC handbook of thermoelectrics”, CRC Boca Raton, 407440 (1995).
[65] C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber”, Appl. Phys. Lett. 101, 211106(2012).
[66] S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen and D. Tang, “Third order nonlinear optical property of Bi2Se3”, Optics express. 21, 2072-2082(2013).
[67] S. Sahoo, A. P. Gaur, M. Ahmadi, M. J. F. Guinel and R. S. Katiyar, “Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2”, The Journal of Physical Chemistry C. 117, 9042-9047(2013).
[68] B. Zhang, G. Li, M. Chen, Z. Zhang and Y. Wang, “Passive mode locking of a diode-end-pumped Nd: GdVO 4 laser with a semiconductor saturable absorber mirror”, Optics letters. 28, 1829-1831(2003).
[69] S. Berber, Y. K. Kwon and D. Tománek, “Unusually high thermal conductivity of carbon nanotubes”, Phys. Rev. Lett. 84, 4613(2000).
[70] U. Keller, “Recent developments in compact ultrafast lasers”, Nature. 424, 831-838(2003).
[71] J. L. He, C. K. Lee, J. Y. Huang, K. F. Huang, S. C. Wang and Ci-Ling Pan, “Diode-pumped passively mode-locked multiwatt Nd:GdVO4 laser with a saturable bragg reflector”, Appl. Opt. 42, 5496-5499(2003).
[72] M. J. Lederer, V. Kolev, B. L. Davies, H. H. Tan and C. Jagadish, “Ion-implanted InGaAs single quantum well semiconductor saturable absorber mirrors for passive mode locking”, J. Phys. D: Appl. Phys. 34, 2455-2464(2001).
[73] X. Liu, L. Qian, F. Wise, Z. Zhang, T. Itatani, T. Sugaya, T. Nakagawa and K. Torizuka, “Diode-pumped Cr:forsterite laser mode locked by a semiconductor saturable absorber”, Appl. Opt. 37, 7080-7084(1998).
[74] F. Bonaccorso1, Z. Sun, T. Hasan and A. C. Ferrari, “Graphene photonics and optoelectronics”, Nature Photonics. 4, 611-622(2010).
[75] U. Keller and C. T. Anne, “Passively modelocked surface-emitting semiconductor lasers”, Physics Reports. 429, 67-120(2006).
[76] S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, J. Wang, “Broadband Few‐Layer MoS2 Saturable Absorbers”, Adv. Mater. 26, 3538-3544(2014).
[77] A. Cavalleri, Cs. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition”, Physical Review Letters. 87, 237401(2001).
[78] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh and D. T. Tang, “Atomic‐layer graphene as a saturable absorber for ultrafast pulsed lasers”, Adv. Funct. Mater. 19, 3077-3083(2009).
[79] J. C. Chiu, Y. F. Lan, C. M. Chang, X. Z. Chen, C. Y. Yeh, C. K. Lee, G. R. Lin, J. J. Lin and W. H. Cheng, “Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse”, Optics express. 18, 3592-3600(2010).
[80] J. Sotor, G. Sobon and K. M. Abramski, “Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator”, Optics express. 22, 13244-13249(2014).
[81] Z. Yu, Y. Song, J. Tian, Z. Dou, H. Guoyu, K. Li, H. Li and X. Zhang, “High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2Se3 film”, Optics express. 22, 11508-11515(2014).
[82] K. M. F. Shahil, M. Z. Hossain, V. Goyal and A. A. Balandin, “Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials”, J. Appl. Phys. 111, 054305(2012).
[83] Y. Zhang, L. P. Hu, T. J. Zhu, J. Xie and X. B. Zhao, “High yield Bi2Te3 single crystal nanosheets with uniform morphology via a solvothermal synthesis”, Crystal Growth & Design. 13, 645-651(2013).
[84] Y. Hernandez, V. Nicolosi, M. Lotya, F. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. Gunko, J. Boland, P. Niraj, G. Duesberg, S. Krishnamurti, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite”, Nature Nanotechnology. 3, 563-568(2008).
[85] K. M. F. Shahil, M. Z. Hossain, D. Teweldebrhan and A. A. Balandin, “Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators”, Appl. Phys. Lett. 96, 153103 (2010).
[86] L. Sun, Z. Lin, J. Peng, J. Weng, Y. Huang and Z. Luo, “Preparation of few-layer bismuth selenide by liquid-phase-exfoliation and its optical absorption properties”, Scientific Reports. 4, 4794(2013).
[87] D. Teweldebrhan, V. Goyal and A. A. Balandin, “Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals”, Nano letters. 10, 1209-1218(2010).
[88] A. Zajac, M. Skorczakowski, J. Swiderski and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications”, Optic express. 12, 5125-30(2015).
[89] N. Balamurugan and P. Ramasamy, “Investigation of the Growth Rate Formula and Bulk Laser Damage Threshold KDP Crystal Growth from Aqueous Solution by the Sankaranarayanan-Ramasamy (SR) Method”, CRYSTAL GROWTH& DESIGN. 6, 1642–1644 (2006).
[90]T. Egawa, T. Jimbo and M. Umeno, “Monolithically Integrated AlGaAs/InGaAs Laser Diode, P-N Photodetector and GaAs MESFET Grown on Si substrate”, J. Appl. Phys. 32, 650-653(1993).
[91] T. Yabuzaki, A. Ibaragi, H. Hori, M. Kitano and T. Ogawa, “Frequency Stabilization of GaAlAs Laser Using a Doppler-Free Spectrum of the Cs-D Line”, IEEE Quantum Electronics. 19, 169-175(1983).
[92] H. Ogilvy, M. J. Withford, P. Dekker and J. A. Piper, “Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342nm”, Optic express. 11, 2411-2415 (2003).
[93] H. Eilers, W. M. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber and W. Jia, “Performance of a Cr:YAG Laser”, IEEE Quantum Electronics. 29, 2508-2512(1993).
[94]藍信鉅等編著, “激光技術(第三版)”, 科學出版社
[95]Koechner, Walter and M. Bass, “Solid-State Lasers: A Graduate Text”, Springer Science & Business Media(2003).
[96] J. J. Zayhowski and P. L. Kelley, “Optimization of Switched Lasers” IEEE Quantum Electron. 27, 2220–2225(1991).
[97]周炳琨,高以智,陳徟嶸,陳家驊等編著, “激光原理(第五版)”, 國防工業出版社
[98] M. Hajlaoui, E. Papalazarou, J. Mauchain, G. Lantz, N. Moisan, D. Boschetto, Z. Jiang, I. Miotkowski, Y. P. Chen,A. Taleb-Ibrahimi, L. Perfetti and M. Marsi, “Ultrafast Surface Carrier Dynamics in the Topological Insulator Bi2Te3”, Nano Lett. 12, 3532–3536 (2012).
[99]張丙元, “LD泵浦SESAM鎖膜腔倒空激光器的研究”, 北京工業大學, 碩士論文 (2004)
[100] J. C. Chiu, Y. F. Lan, C. M. Chang, X. Z. Chen, C. Y. Yeh, C. K. Lee, G. R. Lin, J. J. Lin and W. H. Cheng, “Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse”, Optics express. 18, 3592-3600(2010).
[101] J. C. Chiu, C. M. Chang, B. Z. Hsieh, S. C. Lin, C. Y. Yeh, G. R. Lin, C. K. Lee, J. J. Lin and W. H. Cheng, “Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber”, Optics express. 19, 4036-4041(2011).
[102] H. Yu, H. Zhang, Y. Wang, C. Zhao, B. Wang, S. Wen, H. Zhang and J. Wang, “Topological insulator as an optical modulator for pulsed solid‐state lasers”, Laser & Photonics Reviews. 7, 77-83(2013).
[103] S. Konno, T. Kojima, S. Fujikawa and K. Yasui, “High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd: YAG laser”, Optics letters. 25, 105-107(2000).
[104] F. Jia, H. Chen, P. Liu, Y. Huang and Z. Luo, “Nanosecond-pulsed, Dual-wavelength Passively Q-switched c-cut Nd: YVO4 Laser Using a Few-layer Bi2Se3 Saturable Absorber”, IEEE J. Sel. Topics Quantum Electron. 21, 369-374(2015).
[105] C. Hönninger, R. Paschotta, F. M. Genoud, M. Moser and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking”, JOSA B. 16, 46-56(1999).
[106] R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers”, Appl. Phys. Lett. B. 73, 653-662(2001).
[107] X. Wang and M. Li, “Continuous-wave passively mode-locked Nd: YVO4/KTP green laser with a semiconductor saturable absorber mirror”, Laser Physics. 20, 733-736(2010).
[108] S. E. Harrison, S. Li, Y. Huo, B. Zhou, Y. L. Chen and J. S. Harris, “Two-step growth of high quality Bi2Te3 thin films on Al2O3 (0001) by molecular beam epitaxy”, Appl. Phys. Lett. 102, 171906 (2013).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code