Responsive image
博碩士論文 etd-0613115-190215 詳細資訊
Title page for etd-0613115-190215
論文名稱
Title
生物可分解的聚丁二酸二丁酯及含少量丁二酸二丙酯之共聚酯/蒙脫土之奈米複合材料
Biodegradable poly(butylene succinate) and its copolyesters with minor amounts of propylene succinate/montmorillonite nanocomposites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
163
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-12
繳交日期
Date of Submission
2015-07-14
關鍵字
Keywords
奈米複合材料、等溫結晶動力學、蒙脫土、共聚酯、聚丁二酸二丁酯
montmorillonite, nanocomposites, isothermal crystallization kinetics, copolyester, poly(butylene succinate)
統計
Statistics
本論文已被瀏覽 5659 次,被下載 23
The thesis/dissertation has been browsed 5659 times, has been downloaded 23 times.
中文摘要
本研究是將蒙脫土混摻進入高分子中為奈米複合材料,並研究它們的性質和等溫結晶。為了要改善高分子與蒙脫土(MMT)之間的相容性,由十八烷基長碳鏈(K2)改質蒙脫土,形成有機化蒙脫土,將聚丁二酸二丁酯(PBSu)以及含少量丁二酸丙酯之共聚酯(PBPSu90/10, PBPSu80/20)各別混摻含有1、3、5 wt%改質蒙脫土(MMT-K2),利用熔融混煉的方式製備奈米複合材料。研究這些生物可分解奈米複合材料的結晶與熔融行為之前,須先探討材料的物理性質,由傅立葉遠紅外線光譜儀(FT-IR)和廣角X光繞射分析儀(WAXD)的圖說明了K2有成功地改質到黏土上,蒙脫土的層間距離從1.62 nm增加到3.94 nm,從奈米複合材料的WAXD圖中可知MMT-K2的層間距離大於5.94 nm,由穿透式電子顯微鏡(TEM)觀察MMT-K2在高分子基材的分散形式,可知這些複合材料的分散型態為插層性,不是脫層型的。藉由熱重分析儀(TGA)檢測奈米複合材料的熱穩定性,複材的熱穩定隨著MMT-K2含量增加而下降。藉由動態機械分析儀(DMA)可得知熱機械性質,當含有PSu的共聚酯中MMT-K2含量為3 wt%或5 wt%時的儲存模數與純的基材相比有明顯的增強,甚至大於PBSu的儲存模數。
藉由微差式掃描熱卡儀(DSC)與偏光顯微鏡(PLM)研究MMT-K2在PBSu、PBP90/10、PBP80/20之等溫結晶行為,Avrami方程式成功地描述這些奈米複合材料之等溫結晶動力學,Avrami指數介於2.42~3.35,在BP80系列奈米複合材料中,純BP80的結晶速率比有添加改質蒙脫土快,這可以歸因於蒙脫土與高分子不相容,在BP90、B100系列奈米複合材料隨著MMT-K2添加愈多而結晶速率愈快。比較高分子在熔融混煉前和混煉後的分子量,分子量會降低所導致球晶成長速率的增加。此外加入MMT-K2影響BP80、BP90和B100的結晶結構與熔融行為很小。
Abstract
In this study, biodegradable nanocomposites were prepared. In order to improve the compatibility between polymer and montmorillonite (MMT), the surface of MMT was organo-modified by disodium cocoamphdipropionate (K2). Then, poly(butylene succinate) (PBSu) and its copolyesters with minor amount of propylene succinate (PBPSu90/10, PBPSu80/20) were blended with 1, 3, or 5 wt% of MMT-K2, respectively, by the melt intercalation. The physical properties of these biodegradable nanocomposites were characterized before studying their crystallization and melting behaviors. The Fourier Transform Infrared spectrum and wide-angle X-ray diffraction (WAXD) pattern show that MMT was successfully modified with K2, and the interlayer distance of MMT was increased from 1.62 to 3.94 nm. The WAXD patterns of nanocomposites yield that the interlayer distance of MMT-K2 was higher than 5.94 nm. The micrographs of transmission electron microscope indicate that these nanocomposites were intercalated, not exfoliated. The results of thermogravimetric analysis revealed that the thermal stability of the resultant nanocomposites was reduced after the addition of MMT-K2. Dynamic mechanical properties of the fabricated 3wt% or 5 wt% nanocomposites of these aliphatic copolyesters showed significant enhancements in the storage modulus compared with the neat matrix, even higher than that of PBSu.
The effect of MMT-K2 on the isothermal crystallization behavior of PBSu, PBPSu90/10, and PBPSu80/20 was investigated using a differential scanning calori- meter (DSC) and polarized light microscopy (PLM). The Avrami equation successfully describes the isothermal crystallization kinetics of these nanocomposites and the value of Avrami exponent was between 2.42 and 3.35. The crystallization rate of neat BP80 was faster than BP80/MMT nanocomposites. This may be ascribed to the incompatibility of BP80 with MMT. On the contrast, the crystallization rate of BP90 or B100 nanocomposites was enhanced as the amount of MMT-K2 increased. The molecular weight of neat polymer before and after the melt intercalation indicated that the reduced molecular weight resulted in the increase of the growth rate of spherulites. Besides, it was found that the incorporation of MMT-K2 has little effect on the crystalline structure as well as the melting behavior of B100, BP90, or BP80.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xvi
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
1.3 實驗流程 2
第二章 基礎理論與文獻回顧 3
2.1 生物可分解高分子材料 3
2.2 蒙脫土 3
2.3 高分子奈米級複合材料 4
2.3.1 簡介 4
2.3.2 製備方法 4
2.3.3 分散型態 5
2.4 高分子結晶動力學(Crystallization kinetics) 6
2.4.1 Avrami 方程式 7
2.4.2 多重熔融峰之行為 8
2.4.3 平衡熔點 9
2.5 偏光顯微鏡 10
2.6 蒙脫土應用在高分子材料中 11
2.6.1 生物可分解高分子/蒙脫土奈米複合材料 11
2.6.2 傳統型高分子/蒙脫土奈米複合材料 12
第三章 實驗 14
3.1 材料 14
3.2 實驗設備 14
3.3 實驗檢測儀器 14
3.4樣品製備及步驟 15
3.4.1 改質蒙脫土的結構分析 15
3.4.2 穿透式電子顯微鏡分析 16
3.4.3 熱穩定性質 16
3.4.4 玻璃轉移溫度與熔融溫度的量測 16
3.4.5 機械性質分析 16
3.4.6 結晶動力學與熔融行為 16
3.4.7 球晶結晶型態與成長速率分析試片製作 17
3.4.8 廣角X光繞射量測 17
3.5將蒙脫土改質為MMT-K2 18
3.6 製備奈米黏土複合材料 18
第四章 結果與討論 19
4.1 合成有機化MMT之性質分析 19
4.1.1 改質後的MMT之WAXD分析 19
4.1.2 改質後MMT之FT-IR分析 19
4.2 奈米複合材料之各項性質分析 20
4.2.1 奈米複合材料分散型態之探討 20
4.2.2 奈米複合材料熱性質之探討 21
4.2.3 奈米複合材料機械性質之探討 22
4.3 奈米複合材料等溫結晶動力學分析與熔融行為 23
4.3.1 BP80奈米複合材料結晶動力學之探討 23
4.3.2 BP80奈米複合材料熔融行為與平衡熔點之探討 24
4.3.3 BP90奈米複合材料結晶動力學之探討 26
4.3.4 BP90奈米複合材料熔融行為與平衡熔點之探討 27
4.3.5 B100奈米複合材料結晶動力學之探討 28
4.3.6 B100奈米複合材料熔融行為與平衡熔點之探討 29
4.4奈米複合材料之球晶成長速率、球晶型態之探討 31
4.4.1 BP80奈米複合材料等溫結晶之球晶成長速率 31
4.4.2 BP80奈米複合材料之結晶形態 31
4.4.3 BP90奈米複合材料等溫結晶之球晶成長速率 31
4.4.4 BP90奈米複合材料之結晶形態 32
4.4.5 B100奈米複合材料等溫結晶之球晶成長速率 32
4.4.6 B100奈米複合材料之結晶形態 33
第五章 結論 34
第六章 參考資料 36
參考文獻 References
1.行政院環保署雙月刊第61期(91年7月)
2.M. Mochizuki, M. Hirami, Structural effects on the biodegradation of aliphatic polyester, Polym. Adv. Technol., 1997, 8, 203-209.
3.J. Yang, W. Tian, Q. Li, Y. Li, A. Cao, Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s bearing functionalizable carbonate building blocks:II. Enzymatic biodegradation and in vitro biocompatibility assay, Biomacromolecules, 2004, 5, 2258-2268.
4.H. Pan, J. Yu, Z. Qiu, Crystallization and morphology studies of biodegradable poly(ɛ-caprolactone)/polyhedral oligomeric silsesquioxanes nanocomposites, Polym. Eng. Sci., 2011, 51, 2159-2165.
5.S. S. Ray, K. Okamoto, M. Okamoto, Structure-property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites, Macromolecules, 2003, 36, 2355-2367.
6.S. S. Ray, K. Okamoto, M. Okamoto, New poly(butylene succinate)/layered silicate nanocomposites. II. Effect of organically modified layered silicates on structure, properties, melt rheology, and biodegradability, J. Polym. Sci. Part B: Polym. Phys., 2003, 41, 3160-3172.
7.唐義祥, 樓白楊, 梁多平, 聚丁二酸丁二酯/奈米高嶺土共混体系结晶及力學
性能研究, 高分子學報, 2011, No 5, 516-521.
8.S. Komarneni, Nanocomposites, J. Mater. Chem., 1992, 2, 1219-1230.
9.R. Chandra, R. Rustgi, Biodegradable polymers, Prog. Polym. Sci., 1998, 23, 1273-1336.
10.R. A. Gross, B. Kalra, Biodegradable polymers for the environment, Science, 2002, 297, 803-807.
11.U. Neumann, B. Wiege, S. Warwel, Synthesis of hydrophobic starch esters by reaction of starch with various carboxylic acid imidazolides, Starch‐Stärke, 2002, 54, 449-453.
12.葉瑞銘, 翁暢健, 有機無機混成奈米複合材料, Chemistry, 2004, 62, 473-482.
13.蔡宗燕, 奈米黏土-高分子複合材料之發展與應用, 工研院化工所, 2001, 126-133.
14.S. K. Lim, J. J. Lee, S. G. Jang, S. I. Lee, K. H. Lee, H. J. Choi, I. J. Chin, Synthetic aliphatic biodegradable poly(butylene succinate)/clay nanocomposite foams with high blowing ratio and their physical characteristics, Polym. Eng. Sci., 2011, 51, 1316-1324.
15.F. Yang, Z. Qiu, Preparation, crystallization, and properties of biodegradable poly(butylene adipate‐co‐terephthalate)/organomodified montmorillonite nanoco- mposites, J. Appl. Polym. Sci., 2010, 119, 1426-1434.
16.Y. Someya, Y. Sugahara, M. Shibata, Nanocomposites based on poly(butylene adipate‐co‐terephthalate) and montmorillonite, J. Appl. Polym. Sci., 2004, 95, 386-392.
17.S. S. Ray, M. Bousmina, K. Okamoto, Structure and properties of nanocomposites based on poly(butylene succinate‐co‐adipate) and organically modified mont- morillonite, Macromol. Mater. Eng., 2005, 290, 759-768.
18.B. Chieng, N. Ibrahim, W. Wan Yunus, Effect of organo-modified montmorill- onite on poly(butylene succinate)/poly(butylene adipate-co- terephthalate) nano- composites, eXPRESS Polym. Lett., 2010, 4, 404-414.
19.S. Y. Hwang, E. S. Yoo, S. S. Im, Effect of the urethane group on treated clay surfaces for high-performance poly(butylene succinate)/montmorillonite nanoco- mposites, Polym. Degrad. Stab., 2009, 94, 2163-2169.
20.D. Ratna, O. Becker, R. Krishnamurthy, G. Simon, R. Varley, Nanocomposites based on a combination of epoxy resin, hyperbranched epoxy and a layered silicate, Polymer, 2003, 44, 7449-7457.
21.C. S. Triantafillidis, P. C. LeBaron, T. J. Pinnavaia, Homostructured mixed inorganic-organic ion clays: A new approach to epoxy polymer-exfoliated clay nanocomposites with a reduced organic modifier content, Chem. Mat., 2002, 14, 4088-4095.
22.J. H. Park, S. C. Jana, Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites, Macromolecules, 2003, 36, 2758-2768.
23.Y. Fukushima, S. Inagaki, Synthesis of an intercalated compound of montmori- llonite and 6-polyamide, J. Incl. Phenom., 1987, 5, 473-482.
24.Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, One- pot synthesis of nylon 6–clay hybrid, J. Polym. Sci., Part A: Polym. Chem., 1993, 31, 1755-1758.
25.C. Zilg, R. Thomann, R. Mulhaupt, J. Finter, Polyurethane nanocomposites containing laminated anisotropic nanoparticles derived from organophilic layered silicates, Adv. Mater., 1999, 11, 49-52.
26.G. Bodor, Stuctural investigation of polymers. Eillis Horwood Pub, Chichester England, 1991, Chapter 6.
27.Y. Lee, R. S. Porter, Double-melting behavior of poly(ether ether ketone), Macromolecules, 1987, 20, 1336-1341.
28.Y. Lee, R. S. Porter, J. S. Lin, On the Double-melting behavior of poly(ether ether ketone), Macromolecules, 1989, 22, 1756-1760.
29.B. S. Hsiao, K. H. Gardner, D. Q. Wu. Time-resolved X-ray study of poly(arylether ether ketone) crystallization and melting behavior: I: crystallization, Polymer, 1993, 34, 3986-3995.
30.Z. G. Wang, B. S. Hsiao, B. B. Sauer, W. G. Kampert. The nature of secondary crystallization in poly(ethylene terephthalate), Polymer, 1999, 40, 4615-4627.
31.N. Krüeger, H. G. Zachmann, Investigation of the melting behavior of poly(arylether ketones) by simultaneous measurements of SAXS and WAXS employing synchrotron radiation, Macromolecules, 1993, 26, 5202-5208.
32.J. D. Hoffman, J. J. Weeks, Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene, J. Res. Nat. Bur. Stand., 1962, 66, 13-28.
33.J. D. Hoffman, R. L. Miller, Kinetics and crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment, Polymer, 1997, 38, 3151-3212.
34.J. D. Hoffman, G.T. Davis, JI. Jr. Lauritzen, Treatise on Solid State Chemistry, Vol. 3, Crystalline and Noncrystalline Solids, N.Y: Hannay ed. Plenum, 1976, Chap. 7.
35.W. D. Neese, Introduction to Optical Mineralogy 2nd, Oxford University Press, New York, 1991.
36.Y. Someya, T. Nakazato, N. Teramoto, M. Shibata, Thermal and mechanical properties of poly(butylene succinate) nanocomposites with various organo ‐modified montmorillonites, J. Appl. Polym. Sci., 2003, 91, 1463-1475.
37.T. Y. Tsai, C. K. Wen, H. J. Chuang, M. J. Lin, U. Ray, Effect of clay with different cation exchange capacity on the morpholopy and properties of poly(methyl methacrylate)/clay nanocomposites, Polym. Compos., 2009, 10, 1552-1561.
38.馬繼盛, 漆宗能, 李革, 胡友良, 聚丙烯/蒙脫土納米複合材料的等溫結晶研究, 高分子學報, 2001, No 5, 589-593.
39.蔡宗燕,奈米化學與科技應用,「奈米級黏土/高分子複合材料」,工業技術 研究院,化工所,2005, 135-156.
40.I. W. Hamley, Introduction to Soft Matter. Wiley, New York. 2000, p.103.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code