Responsive image
博碩士論文 etd-0613116-024136 詳細資訊
Title page for etd-0613116-024136
論文名稱
Title
理論預測官能化鉍化鎵化合物蜂巢狀結構之量子異常霍爾效應
Prediction of Quantum Anomalous Hall Insulator in Functionalized GaBi Honeycomb
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
46
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-05-25
繳交日期
Date of Submission
2016-07-13
關鍵字
Keywords
能帶結構、第一原理計算、量子異常霍爾效應、拓撲相變、鉍化鎵蜂巢結構
First-principles calculations, Band structure, Quantum anomalous Hall effect, Topological phase transition, GaBi honeycomb
統計
Statistics
本論文已被瀏覽 5664 次,被下載 489
The thesis/dissertation has been browsed 5664 times, has been downloaded 489 times.
中文摘要
利用第一原理計算,我們預測單面氟化鉍化鎵蜂巢結構在受到拉應變下產
生量子異常霍爾絕緣體相。在包含自旋軌道耦合作用的自旋極化能帶圖中,
發現Γ 點上的能帶反轉導致拓撲相變。為了確認拓撲性質,我們計算陳數
C,並得到C = −1,確認材料存在量子異常霍爾相。此外,從鋸齒狀之單面
官能化鉍化鎵奈米帶的能帶結構中發現在能隙內具有唯一一條穿過費米面的
邊界能帶導致系統從絕緣態成為傳導態。最後探討鹵化及氫化的結果並比較。
本研究預測拉應變下的單面官能化鉍化鎵的蜂巢結構有潛力提供新的基礎作
為基於量子異常霍爾相的自旋元件。
Abstract
Using first-principles electronic structure calculations, we predict half-fluorinated
GaBi honeycomb under tensile strain to harbor quantum anomalous
hall (QAH) insulating phases. A single band inversion at the Γ point
was found in spin-polarized band structure calculations including spin-orbit
coupling effects. In order to confirm topological properties, we evaluated the
Chern number (C) and found C = −1, confirming the presence of a QAH
phase. Moreover, the electronic spectrum of a half-fluorinated GaBi nanoribbon
with zigzag edge is shown to possess only one edge band crossing the
Fermi level within the band gap, which leads insulated state to conductive
state. And last, we discussed halogenated and hydrogenated GaBi and compared
with fluorinated GaBi. Our results suggest that half-functionalized of
the GaBi honeycomb under tensile strain can potentially provide a new platform
for developing novel spintronics devices based on the QAH phase.
目次 Table of Contents
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . .ii
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
1 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 理論及計算方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 套裝計算軟體設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 貝瑞相位(Berry phase) . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 陳數拓撲不變量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.1 拓撲性質. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.3.2 陳數拓撲不變量. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 拓撲絕緣體及Z2 不變量. . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1 拓撲絕緣體. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Z2 拓撲不變量. . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 鹵化鉍化鎵8
3.1 氟化鉍化鎵的晶體結構預測. . . . . . . . . . . . . . . . . . . . . . . 8
3.2 氟化鉍化鎵的拉應變效應. . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 氟化鉍化鎵的拓撲相變. . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 氟化鉍化鎵的能帶結構. . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 氟化鉍化鎵的邊界態能帶結構. . . . . . . . . . . . . . . . . . . . . . 21
3.6 氯化、溴化和碘化的鉍化鎵. . . . . . . . . . . . . . . . . . . . . . . 23
4 氫化鉍化鎵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 氫化鉍化鎵的晶體結構預測. . . . . . . . . . . . . . . . . . . . . . . 27
4.2 氫化鉍化鎵的拉應變效應及拓撲相變. . . . . . . . . . . . . . . . .29
5 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
參考文獻 References
[1] H. Weng, R. Yu, X. Hu, X. Dai, and Z. Fang, Adv. Phys. 64, 227 (2015).
[2] K. He, Y. Wang, and Q.-K. Xue, Natl. Sci. Rev. 1, 38 (2014).
[3] K.V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
[4] B.I. Halperin, Phys. Rev. B 25, 2185 (1982).
[5] D.J. Thouless, M. Kohmoto, M.P. Nightingale, and M. den Nijs, Phys. Rev.
Lett. 49, 405 (1982).
[6] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A.Bansil, D. Grauer, Y.S.
Hor, R.J. Cava, and M.Z. Hasan, Nature Physics 5, 398 (2009).
[7] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang, Science 329,
61 (2010).
[8] C.-Z. Chang, J. Zhang, M. Liu, Z. Zhang, X. Feng, K. Li, L.-L. Wang, X. Chen,
X. Dai, Z. Fang, X.-L. Qi, S.-C. Zhang, Y. Wang, K. He, X.-C. Ma, and Q.-K.
Xue, Adv. Mater. 25, 1065 (2013).
[9] C.-Z. Chang, et al. Science 340, 167 (2013).
[10] X. Kou, L. Pan, J. Wang, Y. Fan, E.-S. Choi, W.-L. Lee, T. Nie, K. Murata,
Q. Shao, S.-C. Zhang, K.-L. Wang, Nat. Commun. 6, 8474 (2015).
[11] F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[12] C.L. Kane and E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[13] Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S.-C.
Zhang, Phys. Rev. Lett. 111, 136804 (2013).
[14] B.-H. Chou, Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, Y.-T. Liu, H. Lin, and A.
Bansil, New J. Phys. 16, 115008 (2014).
[15] Z. Qiao, S.-A. Yang, W. Feng, W.-K. Tse, J. Ding, Y. Yao, J. Wang, and Q.
Niu, Phys. Rev. B 82, 161414 (2010).
[16] S.-C. Wu, G. Shan, and B. Yan, Phys. Rev. Lett. 113, 256401 (2014).
[17] C.-C. Liu, S. Guan, Z. Song, S.-A. Yang, J. Yang, and Y. Yao, Phys. Rev. B
90, 085431 (2014).
[18] Z. Song, C.-C. Liu, J. Yang, J. Han, M. Ye, B. Fu, Y. Yang, N. Qian, J. Lu,
and Y. Yao, Asia Mat. 6, 147 (2014).
[19] L. Chen, G. Cui, P. Zhang, X. Wang, H. Liu, and D. Wang, Phys. Chem. Chem.
Phys. 16, 17206 (2014).
[20] C.-C. Liu, J.-J. Zhou, and Y. Yao, Phys. Rev. B 91, 165430(2015).
[21] K.-J. Jin and S.-H. Jhi, Sci. Rep. 5, 8426 (2015).
[22] T. Zhou, J. Zhang, B. Zhao, H. Zhang, and Z. Yang, Nano Lett. 15, 5149
(2015).
[23] F.-C. Chuang, L.-Z. Yao, Z.-Q. Huang,; Y.-T. Liu, C.-H. Hsu, T. Das, H. Lin,
and A. Bansil, Nano Lett. 14, 2505 (2014).
[24] C.P. Crisostomo, L.-Z. Yao, Z.-Q. Huang, C.-H. Hsu, F.-C. Chuang, H. Lin,
M.A. Albao, and A. Bansil, Nano Lett. 15, 6568 (2015).
[25] L.-Z. Yao, C.P. Crisostomo, C.-C. Yeh, S.-M. Lai, Z.-Q. Huang, C.-H. Hsu,
F.-C. Chuang, H. Lin, and A. Bansil, Sci. Rep. 5, 15463 (2015).
[26] L. Li, X. Zhang, X. Chen, and M. Zhao, Nano Lett. 15, 1296 (2015).
[27] M. Zhao, X. Chen, L. Li, and X. Zhang, Sci. Rep. 5, 8441 (2015).
[28] W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).
[29] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[30] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[31] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[32] J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
[33] H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).
[34] A.A. Mostofi, J.R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari,
Comput. Phys. Commun. 178, 685 (2008).
[35] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).
[36] M.V. Berry, Proc. R. Soc. Lond. A 398, 45 (1984).
[37] F.D.M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).
[38] M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[39] C.L. Kane and E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code