Responsive image
博碩士論文 etd-0613116-123718 詳細資訊
Title page for etd-0613116-123718
論文名稱
Title
高品質與低損耗五氧化二鉭微環形共振腔優化與應用
High Quality and Low-loss Ta2O5 Micro-ring Resonator Optimization and Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-08
繳交日期
Date of Submission
2016-07-13
關鍵字
Keywords
色散、五氧化二鉭、共振腔、微環、四波混頻、波導
Resonator, Micro-ring, Waveguide, Tantalum pentoxide(Ta2O5), Dispersion, Four-wave mixing(FWM)
統計
Statistics
本論文已被瀏覽 5663 次,被下載 0
The thesis/dissertation has been browsed 5663 times, has been downloaded 0 times.
中文摘要
近十年來,材料的非線性特性已被廣泛的應用在積體集成光學中,例如全光調變、頻率光梳、四波混頻等。本研究中,由於五氧化二鉭(Ta2O5)相較於氮化矽(Si3N4)與二氧化矽(SiO2)具有高非線性折射率潛能,因此我們期望透過製備高品質五氧化二鉭微環形共振腔結構來達到四波混頻光參量震盪(Four-wave mixing optical parametric oscillation,FWM OPO)。
首先,我們利用反應式射頻磁控濺鍍成長五氧化二鉭薄膜,藉由650度恆溫1小時的後退火處理,得到低粗糙度且非晶相的緻密表面。其薄膜折射率(Refractive index, n)為2.1,並具有低消光係數(Extinction coefficient, k)。
接著我們透過電子束微影、乾蝕刻等步驟製備出導光層為700 x 400nm2的U型波導與直徑100m大小的微環形共振腔,波導間距(gap)設計在400nm~1300nm。最後我們在量測系統上輸入1.55m為中心波長的可調式雷射(Tunable laser)至波導,並分析環形共振腔造成的穿透率變化,結果顯示最佳品質因子(Quality factor, Q)出現在間距1100nm,其值達85451,共振腔傳播損耗係數(α)為0.85cm-1,比所有文獻上的Ta2O5共振腔之Q值都要來的大。
此外,我們透過商用數值模擬軟體(Rsoft),針對五氧化二鉭光波導的色散曲線進行設計,透過不同導光層的尺寸大小改變光場分布,進而影響波導的色散曲線,設計出正的波導色散曲線以抵消材料色散特性,找出一條接近零色散的曲線來達到色散補償效應。藉由以上實驗配合模擬的成果,預期在五氧化二鉭光參量震盪上能有更進一步的研究成果。
Abstract
Recently, nonlinearity of material has been demonstrated in photonic integrated circuits, including all optical modulation, frequency combs, and four-wave mixing. Typically, materials with high nonlinearity, device with high optical quality and dispersion compensation are important issue. In this thesis, using high optical quality Ta2O5 as waveguide material, high Q micro-ring with U- shaped channel waveguide was developed. The Q as high as 85000 was achieved when the diameter of micro-ring resonator and the gap between the waveguide and ring cavity are 100 m and 1100 nm, respectively. The corresponding unloaded Q is over 100000. Additionally, the chromatic dispersion of Ta2O5 waveguide has been theoretically investigated. To compensate the material dispersion from Ta2O5, various dimension of the waveguide with air or SiO2 cladding were analyzed. The preliminary result shows that waveguide with dimension of TE1000×800nm2 and cladding of air exhibit the anomalous dispersion. Meanwhile, the estimated flat and near-zero dispersion of chromatic dispersion curve is expected to optimize the conversion efficiency as well as conversion bandwidth of FWM-OPO process in the Ta2O5 waveguide.
目次 Table of Contents
目錄
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 viii
表次 xii
第一章 緒論 1
1.1 非線性波導簡介 1
1.2 波導材料回顧 3
1.3 五氧化二鉭(Ta2O5)光電元件應用 7
1.4 研究動機 8
1.5 論文架構 12
第二章 元件製程之優化與量測方法 13
2.1 實驗流程 13
2.2 微環形共振腔與波導幾何設計 14
2.3 元件製程 15
2.3.1 薄膜沉積 16
2.3.2 熱退火(Annealing) 22
2.3.3 薄膜之光學特性量測 23
2.3.4 電子束微影(E-beam Lithography) 24
2.3.5 乾蝕刻(ICP-RIE) 30
2.3.6 電漿輔助化學氣相沉積(PECVD) 33
2.3.7 切割 34
2.3.8 研磨 35
2.4 量測方式 36
2.4.1 環形共振腔與品質因子(Quality factor) 37
2.5 章節結論 47
第三章 五氧化二鉭波導色散計算 48
3.1 色散補償議題 48
3.2 實驗動機 50
3.3 波導幾何設計 51
3.4 色度色散(Chromatic Dispersion, CD)模擬 52
3.4.1 材料特性 53
3.4.2 波導設計 54
3.4.3 數值模擬(Rsoft)計算 54
3.4.4 色度色散(Chromatic dispersion)計算 55
3.5 波長相依性 57
3.6 章節結論 58
第四章 結論與未來展望 59
4.1 結論 59
4.2 未來展望 61
參考文獻 62
參考文獻 References
參考文獻
[1] G. E. Moore, “Cramming more components onto integrated circuits”, Electronics, 38, 114(1965).
[2] D.A.B. Miller, “Limit to the Bit-Rate Capacity of Electrical Interconnects from the Aspect Ratio of the System Architecture”, Journal of Parallel and Distributed Computing, 41, 42(1997).
[3] A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light”, Nature Photonics, 1, 153(2007).
[4] D.A.B. Miller, “Optical interconnects to silicon”, IEEE Journal of Selected Topics in Quantum Electronics , 6, 1312(2000).
[5] A. Liu, R. Jones, L. Liao, D. S. Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “ A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor”.Nature, 427, 615(2004).
[6] Q. Xu, V. R. Almeida, and M. Lipson, “Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide”, Opt. Lett., 30, 35(2005).
[7] Q. Xu, S.Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon Modulators”, Opt. Express, 15, 430(2007).
[8] P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch”, Opt. Express, 15, 9600(2007).
[9] V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All optical switching on a silicon chip”, Opt. Lett., 29, 2867(2004).
[10] Y. Vlasov, W. M. J. Green, and F. Xia, “ High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks”, Nature Photonics, 2, 242(2008).
[11] F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “ Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects”, Opt. Express, 15, 11934(2007).
[12] L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback”, Opt. Express, 15,9194(2007).
[13] K. Preston, P. Dong, B. Schmidt, and M. Lipson “High-speed all-optical modulation using polycrystalline silicon microring resonators”, Appl. Phys. Lett., 92, 151104(2008).
[14] V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson. “All-optical control of light on a silicon chip”, Nature, 431, 1081(2004).
[15] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip”, Nature, 441, 960(2006).
[16] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs”, Science, 332, 555(2011).
[17] G. P. Agrawal, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers”, IEEE Journal of Quantum Electronics, 25, 2997(1989).
[18] P. N. Kean, K. Smith, and W. Sibbett, “Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre”, IEE Proceedings, 134, 163(1987).
[19] H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm”, Appl. Phys. Lett. 80, 416(2002).
[20] C. Y. Tai, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation”, Opt. Express, 12, 5110(2004).
[21] R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical Frequency Synthesizer for Precision Spectroscopy”, Phys. Rev. Lett. 85, 2264(2000).
[22] K. Schmitt, A. Müller, J. Huber, S. Busch, and J. Wöllenstein, “Compact photoacoustic gas sensor based on broadband IR source ”, Elsevier Ltd. , 25, 1081(2011).
[23] Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology ”, Nature, 416, 233(2002).
[24] S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb”, Nature, 445, 627(2007).
[25] R. A. McCracken, J. Sun, C. G. Leburn, and D. T. Reid, “Broadband phase coherence between an ultrafast laser and an OPO using lock-to-zero CEO stabilization”, Opt. Express, 20, 16269(2012).
[26] M. Pu, L. Ottaviano, E. Semenova, L. K. Oxenløwe, and K. Yvind, “Ultra-Low Threshold Power On-Chip Optical Parametric Oscillation in AlGaAs-On- Insulator Microresonator”, CLEO, 10,1034(2015).
[27] J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics”, Nature Photonics. 4, 535(2010).
[28] H. Fukuda, K. Yamada, T. Shoji, M. Takahashi,T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides”, Opt. Express, 13, 4630(2005).
[29] A. G. Griffith, R. K.W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation”, Nature Comm., 6, 6299(2015).
[30] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator”, Nature, 450, 2027(2007).
[31] J. A. Giordmaine, “Mixing of light beams in crystals”, Phys. Rev. Lett., 8, 19 (1962).
[32] L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator”, Nature Photonics, 4, 41(2010).
[33] D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides”, Opt. Express, 17, 1865(2009).
[34] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity”, Phys. Rev. Lett., 93, 083904(2004).
[35] J. S. Levy, A. Gondarenko, M.A. Foster, A. C. T.Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects”, Nature Photonics, 4, 37(2010).
[36] I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides”, Opt. Express, 37, 2997(2012).
[37] H. Jung, C. Xiong, K. Y. Fong, X. Zhang, and Hong X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator”, Opt. Lett., 38, 2810(2013).
[38] H. Jung, R. Stoll, X. Guo, D. Fischer, and H. X. Tang, “Green, red and IR frequency comb line generation from single IR pump in AlN microring resonator”, Optica, 1, 396(2014).
[39] C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators”, Nature Comm. 4, 1345(2013).
[40] I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum”, Opt. Express, 20, 6604(2012).
[41] I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator”, Opt. Lett., 34, 878(2009).
[42] ]D. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinum generation in highly nonlinear chalcogenide nanowires”, Opt. Lett., 33, 660 (2008).
[43] M. R. E. Lamont, B. Luther, D. Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip”, Opt. Express, 16, 20374(2008).
[44] J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators”, Opt. Express, 29, 769(2004).
[45] D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range”, Opt. Express, 22, 1244(1997).
[46] P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Wavelength conversion in GaAs micro-ring resonators”, Opt. Express, 25, 554(2000).
[47] B. T. Chen, “Novel nonlinear waveguide material tantalum pentoxide and microring fabrication”, Department of Photonics National Sun Yat-sen University, Master thesis(2014).
[48] http://www.enigmatic-consulting.com/semiconductor_processing/CVD_Fundamentals/films/Ta2O5.html
[49] G. S. Oehrlein, “Oxidation temperature dependence of the dc electrical conduction characteristics and dielectric strength of thin Ta2O5 films on silicon”, J. Appl. Phys., 59, 1587(1986).
[50] J. C. Zhou, D. T. Luo, Y. Z. Li, and Z. Liu, “Effect of sputtering pressure and rapid thermal annealing on optical properties of Ta2O5 thin films”, Trans. Nonferrous Met. Soc. China, 19, 359(2009).
[51] M. F. A. Muttalib, R. Y. Chen, S. J. Pearce, and M. D. B. Charlton, “Anisotropic Ta2O5 waveguide etching using inductively coupled plasma etching”, JVSTA, 32, 041304(2014).
[52] Emmett E. Perl, William E. McMahon, John E. Bowers, and Daniel J. Friedman, “Material Selection and Fabrication Parameters for Antireflective Nanostructures Integrated with Multijunction Photovoltaics”, IEEE, 10, 1174(2014).
[53] https://en.wikipedia.org/wiki/Tantalum_pentoxide
[54] C. L. Wu, B. T. Chen, Y. Y. Lin, W.C. Tien, G. R. Lin, Y. J. Chiu, Y. J. Hung, A. K. Chu, and C. K. Lee , “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure”,Opt. Express, 23, 26268(2015).
[55] C. L. Wu, Y. J. Chiu, C. L. Chen, Y. Y. Lin, A. K. Chu, and C. K. Lee, “Four-wave-mixing in the loss low submicrometer Ta2O5 channel waveguide”,Opt. Lett., 40, 4528(2015).
[56] P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, ”Full Stabilization of a Microresonator-Based Optical Frequency Comb”, Phys. Rev. Lett., 101, 053903(2008).
[57] http://highscope.ch.ntu.edu.tw/wordpress/?p=2956
[58] A. K. Chu, “Special topics on magnetron sputtering”, Department of Photonics National Sun Yat-sen University.
[59] A. K. Chu, Y. S. Huang, and S. H. Tang, “Room-temperature radio frequency sputtered Ta2O5 a new etch mask for bulk silicon dissolved processes”, JVSTB, 17, 455(1999).
[60] C. Joseph, P. Bourson, and M. D. Fontana, “Amorphous to crystalline transformation in Ta2O5 studied by raman spectroscopy”, J. Raman Spectrosc, 43,1146(2012).
[61] A. Gondarenko, J. S. Levy, and M. Lipson. “High confinement micron-scale silicon nitride high Q ring resonator”, Opt. Express, 17, 11366(2009).
[62] M. Shearn, K. Diest, X. Sun, A. Zadok, H.Atwater, A. Yariv, and A. Scherer, “ Advanced silicon processing for active planar photonic devices”, JVSTB, 27, 3180(2009).
[63] L. B. Jonsson, J. Westlinder, F. Engelmark, C. Hedlund, J. Du, U. Smith and H.-O. Blom, “ Patterning of tantalum pentoxide, a high epsilon material, by inductively coupled plasma etching”, JVSTB, 18, 1906(2000).
[64] A. L. Fehrembach, F. Lemarchand, A. Talneau, and A. Sentenac, “High Q Polarization Independent Guided-Mode Resonance Filter With Doubly Periodic Etched Ta2O5 Bidimensional Grating”, Journal of Lightwave Technology, 28, 2037(2010).
[65] K. P. Lee, K. B. Jung, R. K. Singh, S. J. Pearton, C. Hobbs and P. Tobin “Comparison of plasma chemistries for dry etching of Ta2O5”, JVSTA, 18, 1169(2000).
[66] K. P. Lee, K. B. Jung, R. K. Singh, S. J. Pearton, C. Hobbs, and P. Tobin, “Comparison of plasma chemistries for dry etching of Ta2O5”, JVSTA, 18, 1169(2000).
[67] C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications”, Elsevier, 22, 269(1998).
[68] T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, K. Baumann, N. Moll, T. Sto¨ferle, and R.F. Mahrt, “ Fabrication and characterization of Ta2O5 photonic feedback structures Microelectron”, Journal Microelectronic Engineering, 85, 1425(2008).
[69] W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators”, Laser Photonics Rev., 6, 47(2012).
[70] D. W. Huang, “Fundamentals and Applications of Optical Waveguides, Chapter 4 Coupled Mode Theory”, National Taiwan University.
[71] J. S. Levy, “Integrated nonlinear optics in silicon nitride waveduide and resonators”, Cornell University, Doctor of Philosophy(2011).
[72] S. M. Cho, Y. T. Kim, and D. H. Yoon, “Optical Characterization of Silica Based Waveguide Prepared by Plasma Enhanced Chemical Vapor Deposition”, JKPS, 42, 947(2003).
[73] I. Pereyra, and M.I. Alayo, “High quality low temperature DPECVD silicon dioxide”, Journal of Non-Crystalline Solids, 212, 225(1997).
[74] J. T. Fitch, S. S. Kim, and G. Lucovsky, “Thermal stabilization of device quality films deposited at low temperatures”, J. Vac. Sci. Technol. A 8, 1871(1990).
[75] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon”, Phys. Rev., B 45, 13367(1992).
[76] P. Rabiei, A. Rao, J. Chiles, J. Ma, and S. Fathpour, “Low-loss and high index-contrast tantalum pentoxide microring resonators and grating couplers on silicon substrates”, Opt. Lett., 39, 5379(2014).
[77] I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres”, Phys. Rev. A. , 76, 043837(2007).
[78] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip”, Nature 441, 960(2006).
[79] R. K.W. Lau, M. Ménard, Y. Okawachi, M. Lipson, and A. L. Gaeta, “Four-Wave Mixing in Si3N4-Clad Silicon-on-Insulator Waveguides for the Mid-Infrared Region”, CLEO, 10, CM1L.5(2013).
[80] G. P. Agrawal, “Nonlinear Fiber Optics”, Academic Press, Boston(1989).
[81] J. Hansryd, A. Andrekson, M. Westlund, and J. Li, P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications” , IEEE, 8, 506(2002).
[82] R. Stolen and J. Bjorkholm. “Parametric amplification and frequency conversion in optical fibers”, IEEE Journal of Quantum Electronics, 18, 1062(1982).
[83] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides”, Opt. Express, 4, 4357(2006).
[84] M. R. Lamont, C. M. d. Sterke, and B. J. Eggleton, “Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion”, Opt. Express, 15, 9458(2007).
[85] G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals”, Opt. Comm., 163, 95 (1999).
[86] B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula”, Appl. Opt., 23, 4477(1984).
[87] D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides”, Appl. Phys. Lett., 96, 061101(2010).
[88] A. M. Pérez, C. Santiago, and F. R. C. Zuñiga, “Optical properties of amorphous hydrogenated silicon nitride thin films”, Opt. Eng., 45, 123802(2006).
[89] I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica”, JOSA, 55, 1205(1965).
[90] S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, and M. Lipson, “On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities”, Opt. Express, 22, 26517(2014).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.19.31.73
論文開放下載的時間是 校外不公開

Your IP address is 3.19.31.73
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code