Responsive image
博碩士論文 etd-0613116-143222 詳細資訊
Title page for etd-0613116-143222
論文名稱
Title
藉由DNA含氮鹼基調控共軛高分子組裝行為:超分子設計及功能探討
Tuning assembly behavior of conjugated polymers through DNA nucleobases: From supramolecular design to emerging functions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-16
繳交日期
Date of Submission
2016-07-13
關鍵字
Keywords
共軛高分子、光柵、偶氮苯、超分子、奈米粒子
Supramolecules, Fluorescent nanoparticles, Azobenzene, Conjugated polymers, Surface relief gratings
統計
Statistics
本論文已被瀏覽 5696 次,被下載 271
The thesis/dissertation has been browsed 5696 times, has been downloaded 271 times.
中文摘要
近年來高分子化學領域發展出許多方式來設計新材料,其中超分子化學由於具有分子識別、可調控性、自組裝、易加工等優點,能為材料本身提供多樣化的性質,因而備受關注。另一方面,共軛高分子因具有導電與發光的特性,在光電領域被廣泛的應用,本研究的主題分為兩部分。(一)互補型多點氫鍵超分子應用於水溶性螢光奈米粒子的製備,(二)刺激響應型共軛高分子於表面光柵之製備。
(一) 我們利用鈴木耦合反應(Suzuki-coupling)來進行兩種不同主鏈的共軛高分子PC-N3、PTC-N3的合成,搭配點擊化學反應可於此二高分子側鏈成功接枝DNA含氮鹼基Thymine (T)。多點式氫鍵官能基T的導入大幅提昇了高分子本身的熱性質(Tg分別上昇45 °C及52 °C),氫鍵對於共軛發光性質的影響也於本研究中進行探討。另一方面利用Adenine (A)-Thymine (T)互補氫鍵對的分子識別引入PEG親水高分子,經由簡易混摻製備水溶性螢光奈米粒子。由DLS和TEM結果觀察到材料可以自組裝形成高分子奈米粒子(Polymer dot),尺寸在140~160 nm之間,PC-T、PTC-T奈米粒子可穩定存在於水溶液內,經由細胞毒性的測試也能顯示出我們的高分子奈米粒子具有良好的生物相容性,有助於未來在水溶性發光體與生醫顯影領域方面的應用。
(二)接續前一部分所建立的超分子系統,我們針對其共軛重複單元的選擇來進行探討。利用簡單的反應合成主鏈帶有光敏性官能基偶氮苯的刺激響應型材料PTCAzo-N3和PTCAzo-T,並研究偶氮苯對於光學性質的影響。另一方面,側鏈上T官能基的導入能有效的提升熱性質,與先前研究所得之結果呈現相同趨勢。針對此種材料所形成之薄膜表面進行干涉條紋的照射,我們發現其能夠呈現高低起伏不同的表面光柵,並且利用超分子混摻的方式能對其振幅進行調控。此種新型材料的開發能為光學儲存元件的製備帶來更多的可能性。
Abstract
Supramolecular chemistry is a powerful strategy for molecular design due to simple molecular recognition, controllable properties, self-assembly behaviors, and good processability. Conjugated polymers with good conductivity and light-emitting properties have been widely used in optoelectronic applications. Based on the concepts mentioned above, we prepared novel supramolecular conjugated polymer for further discussions. Our study is divided into two parts. Part Ι: Water-soluble Fluorescent Nanoparticle Fabrication Based On Heterocomplementary Multiple Hydrogen Bonding Interactions, Part Π: Stimuli- responsive conjugated polymers for surface-relief grating fabrication.
In Part Ι, we used Suzuki-coupling polymerization to synthesize two different polymers of PC-N3 and PTC-N3 with different conjugated systems. After post-functionalization with CuAAC “click” reaction, nucleobase-contained conjugated polymers PC-T and PTC-T were successfully synthesized and structure confirmation was proceeded via FT-IR, 1H and 13C NMR measurements. The supramolecular motifs have been introduced to conjugated systems and the effect of non-covalent interaction has been discussed. The glass transition temperature of PC-T and PTC-T were enhanced by strong multiple hydrogen-bonding interaction between thymine (T) base pair based on DSC results. The water-soluble fluorescent nanoparticles were then prepared with hydrophilic polymer PEG-A through heterocomplementary hydrogen bonding between Adenine (A) and Thymine (T) DNA nucleobases. TEM images revealed that the size of nanoparticles of PC-T:PEG-A and PTC-T:PEGA were 140 and 160 nm, respectively. Via the cytotoxic test also shows that nanoparticles with good biocompatibility. These new materials may provide a potential route towards water-soluble Light emitter and cell imaging applications.
In Part Π, We used different conjugated unit to discuss the molecular properties according to the construction of supramolecular system in Part I. Two polymers PTCAzo-N3 and PTCAzo-T have been synthesized through facile organic reactions. After characterization, we found that side-chain induced supramolecular network can efficiently improve the thermal properties and film-forming properties, which is consist with our previous discussion. Futhermore, azobenzene functionality may lead to a change in entire optical properties and perform unique behavior. Under the illumination of diffracted laser beam, the polymer films form special surface relief grating structure. Supramolecular blending system therefore plays an important role in controlling the height of these gratings. The materials proposed in this study provide unconventional strategies to fabricate optical storage devices and may have a promising future for various applications.
目次 Table of Contents
國立中山大學研究生學位論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vii
圖目錄 xii
表目錄 xviii
第一章 緒論 1
1.1前言 1
1.2共軛高分子(Conjugated polymer)文獻回顧 2
1.3高分子奈米粒子(Polymer dot)文獻回顧 3
1.3.1高分子奈米微胞(Polymer micelle)型態 3
1.3.2 智慧型奈米微胞 5
1.4超分子化學(Supramolecular chemistry) 8
1.4.1 分子識別(Molecular recognition) 9
1.4.2 氫鍵(Hydrogen bond) 11
1.5偶氮苯(Azobenzene)文獻回顧 12
1.5.1偶氮苯(Azobenzene)的特性 13
1.5.2偶氮苯(Azobenzene)的應用 14
1.6目的與研究動機 16
第二章 儀器與藥品 17
2.1 溶媒及處理過程 17
2.2 藥品 17
2.3 實驗器材與光譜儀器 18
1.傅立葉轉換紅外光光譜儀(Fourier Transform Infrared Spectrometer,FT-IR) 18
2.核磁共振光譜(Nuclear Magnetic Resonance, NMR) 19
3. 凝膠滲透層析儀 (Gel Permeation Chromatography, GPC) 19
4.微差掃描熱卡計(Differential Scanning Calorimeter,DSC) 20
5.熱重分析儀(Thermal Gravimetric Analyzer,TGA) 20
6.紫外線與可見光譜儀(UV-Vis Spectrophotometer) 20
7.螢光光譜儀(Fluorescence Spectrofluorometer) 21
8.穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 21
9.動態光散射儀(Dynamic Light Scattering, DLS) 21
第三章
互補型多點氫鍵超分子應用於水溶性螢光奈米粒子的製備 Water-soluble Fluorescent Nanoparticle Fabrication Based On Heterocomplementary Multiple Hydrogen Bonding Interactions 22
3.1單體的合成 22
1. 3,6-dibromo-9H-carbazole製備 22
2. 3,6-dibromo-9-(6-bromohexyl)-9H-carbazole製備 22
3. 9-(6-azidohexyl)-3,6-dibromo-9H-carbazole 製備 22
4. 3,6-dibromo-9-octyl-9H-carbazole製備 23
5. 9-octyl-3,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole製備 23
6. 4-Butyl-N,N-bis(4-bromophenyl)aniline製備 23
7. 4-Butyl-N,N-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane-4-phenyl)aniline製備 24
8. Propargyl-Thymine製備 24
3.2高分子的合成 24
3.2.1 PC-T合成 24
(a) 利用鈴木耦合反應製備PC-N3 24
(b) 利用點擊化學製備PC-T 25
3.2.2 PTC-T合成 25
(a) 利用鈴木耦合反應製備PTC-N3 25
(b) 利用點擊化學製備PTC-T 25
3.2.3 PEG-A合成 26
(a) PEG-OTs製備 26
(b) PEG-A製備 26
3.3 高分子奈米粒子(Polymer Dot)的製程 26
3.4 單體合成鑑定分析 32
3.4.1 Carbazole單體合成鑑定分析 32
3.4.2 Triphenylamine單體合成鑑定分析 36
3.5 高分子合成鑑定分析 37
3.5.1 PC-T合成鑑定分析 37
3.5.2 PC-T熱性質分析 41
3.5.3 PTC-T合成鑑定分析 43
3.5.4 PTC-T熱性質分析 48
3.5.5 PEG-A合成鑑定分析 50
3.6 材料分子量分析 52
3.7 UV/Vis吸收光譜測量分析 53
3.7.1 不同濃度下UV/Vis吸收光譜 53
3.7.2 形成高分子奈米粒子之UV/Vis吸收光譜 54
3.8 放光光譜測量分析 56
3.8.1 不同濃度下放光光譜 56
3.8.2 不同溶劑下放光光譜 57
3.8.3 形成水溶高分子奈米粒子之放光光譜 62
3.8.4 螢光量子效率(Quantum yield) 63
3.9 高分子奈米粒子(Polymer Dot)測量分析 64
3.9.1 高分子奈米粒子型態分析 64
3.9.2 螢光顯微影像(fluorescence luminescence image) 67
3.9.3 A-T鹼基對的氫鍵分離實驗 69
3.9.4 生物相容性-細胞存活率(Cell viability) 71
第四章
刺激響應型共軛高分子於表面光柵之製備Stimuli-responsive conjugated polymers
for surface-relief grating fabrication 74
4.1單體的合成 74
1. (E)-1,2-bis(4-iodophenyl)diazene製備 74
4.2高分子的合成 74
4.2.1 PTCAzo-T合成 74
(a) 利用鈴木耦合反應製備PTCAzo-N3 74
(b) 利用點擊化學製備PTCAzo-T 75
4.3 Azobenzene單體合成鑑定分析 77
4.4 高分子合成鑑定分析 78
4.4.1 PTCAzo-T合成鑑定分析 78
4.4.2 PTCAzo-T熱性質分析 84
4.5 材料分子量分析 85
4.6 偶氮苯於高分子的應用-光柵 86
4.6.1 偶氮苯高分子的光柵紀錄讀取 87
4.6.2 分子量對偶氮苯高分子的影響 89
4.6.3 偶氮苯高分子光柵之效率 90
4.6.4 藉由混摻改善偶氮苯高分子光柵 97
第五章 結論 100
第六章 參考文獻 101
參考文獻 References
1. (a) Anwar, N.; Willms, T.; Grimme, B.; Kuehne, A. J. C. ACS Macro Letters 2013, 2, 766; (b) Pedersen, J. S.; Svaneborg, C. Current opinion in colloid & interface science 2002, 7, 158; (c) Shen, H.; Eisenberg, A. Angew. Chem. Int. Ed. Engl. 2000, 39, 3310; (d) Zhulina, E. B.; Borisov, O. V. Macromolecules 2002, 35, 9191; (e) Kataoka, K.; Harada, A.; Nagasaki, Y. Advanced drug delivery reviews 2001, 47, 113; (f) Eisenberg, A.; Moffitt, M.; Vali, H. Chem. Mater. 1998, 10, 1021.
2. Wang, D.; Su, Y.; Jin, C.; Zhu, B.; Pang, Y.; Zhu, L.; Liu, J.; Tu, C.; Yan, D.; Zhu, X. Biomacromolecules 2011, 12, 1370.
3. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc., Chem. Commun. 1977, 578.
4. Evenson, S. J.; Mumm, M. J.; Pokhodnya, K. I.; Rasmussen, S. C. Macromolecules 2011, 44, 835.
5. (a) Sadhanala, A.; Kumar, A.; Pathak, S.; Rao, A.; Steiner, U.; Greenham, N. C.; Snaith, H. J.; Friend, R. H. Advanced Electronic Materials 2015, 1, n/a; (b) Kuehne, A. J. C.; Gather, M. C.; Sprakel, J. Nature Communications 2012, 3, 1088.
6. (a) Medintz, L. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat.Mater. 2005, 4, 435; (b) Yang, J.; Zhang, Y.; Gautam, S.; Liu, L.; Dey, J.; Chen, W.; Mason, R. P.; Serrano, C. A.; Schug, K. A.; Tang, L. Proc. Natl. Acad. Sc. 2009, 106, 10086.
7. Thomas, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339.
8. (a) Wu, C.; Szymanski, C.; Cain, Z.; McNeill, J. J. Am. Chem. Soc. 2007, 129, 12904; (b) Sigurdson, C. J.; Nilsson, K. P. R.; Hornemann, S.; Manco, G.; Polymenidou, M.; Schwarz, P.; Leclerc, M.; Hammarström, P.; Wüthrich, K.; Aguzzi, A. Nature methods 2007, 4, 1023; (c) Tang, H.; Xing, C.; Liu, L.; Yang, Q.; Wang, S. Small 2011, 7, 1464; (d) Qiu, F.; Wang, D.; Zhu, Q.; Zhu, L.; Tong, G.; Lu, Y.; Yan, D.; Zhu, X. Biomacromolecules 2014, 15, 1355.
9. Dai, C.; Yang, D.; Zhang, W.; Bao, B.; Cheng, Y.; Wang, L. Polym. Chem. 2015, 6, 3962.
10. Feng, L. H.; Zhu, C. L.; Yuan, H. X.; Liu, L. B.; Lv, F. T.; Wang, S. Chem. Soc. Rev. 2013, 42, 6620.
11. (a) Li, K.; Liu, B. J. Mater. Chem. 2012, 22, 1257; (b) Li, Y. q.; Liu, J.; Liu, B.; Tomczak, N. Nanoscale 2012, 4, 5694; (c) Liu, J.; Feng, G. x.; Ding, D.; Liu, B. Polym. Chem. 2013, 4, 4326; (d) Ding, D.; Liu, J.; Feng, G.; Li, K.; Hu, Y.; Liu, B. Small 2013, 9, 3093; (e) Bao, B.; Tao, N.; Yang, D.; Yuwen, L.; Weng, L.; Fan, Q.; Huang, W.; Wang, L. Chem. Commun. 2013, 49, 10623; (f) Feng, L. H.; Liu, L. B.; Lv, F. T.; Bazan, G. C.; Wang, S. Adv. Mater. 2014, 26, 3926; (g) Liu, J.; Geng, J. l.; Liao, L. D.; Thakor, N.; Gao, X. h.; Liu, B. Polym. Chem. 2014, 5, 2854.
12. Feng, X. L.; Lv, F. T.; Liu, L. B.; Tang, H. W.; Xing, C. F.; Yang, Q.; Wang, S. ACS applied materials & interfaces 2010, 2, 2429.
13. Geng, J. L.; Sun, C. Y.; Liu, J.; Liao, L. D.; Yuan, Y. Y.; Thakor, N.; Wang, J.; Liu, B. Small 2015, 11, 1603.
14. (a) Pecher, J.; Mecking, S. Chem. Rev. 2010, 110, 6260; (b) Tuncel, D.; Demir, H. V. Nanoscale 2010, 2, 484; (c) Tian, Z. Y.; Yu, J. B.; Wu, C. F.; Szymanski, C.; McNeill, J. Nanoscale 2010, 2, 1999.
15. Schild, H. G. Prog. Polym. Sci. 1992, 17, 163.
16. Yan, L.; Yang, L.; He, H.; Hu, X.; Xie, Z.; Huang, Y.; Jing, X. Polym. Chem. 2012, 3, 1300.
17. Qiu, Y.; Park, K. Advanced Drug Delivery Reviews 2001, 53, 321.
18. Wang, D.; Huan, X.; Zhu, L.; Liu, J.; Qiu, F.; Yan, D.; Zhu, X. RSC Advances 2012, 2, 11953.
19. Wilson, A. J. Soft Matter 2007, 3, 409.
20. De Jesús, O. L. P.; Ihre, H. R.; Gagne, L.; Fréchet, J. M. J.; Szoka, F. C., Jr. Bioconjugate Chem. 2002, 13, 453.
21. Goshe, A. J.; Steele, I. M.; Ceccarelli, C.; Rheingold, A. L.; Bosnich, B. Proc. Natl. Acad. Sc. 2002, 99, 4823.
22. (a) Ichimura, K. Chemical reviews 2000, 100, 1847; (b) Natansohn, A.; Rochon, P. Chemical reviews 2002, 102, 4139.
23. (a) Chan, Y. H.; Gallina, M. E.; Zhang, X.; Wu, I. C.; Jin, Y.; Sun, W.; Chiu, D. T. Anal. Chem. 2012, 84, 9431; (b) Harbron, E. J.; Vicente, D. A.; Hoyt, M. T. The Journal of Physical Chemistry B 2004, 108, 18789.
24. Kumar, G. S.; Neckers, D. C. Chem. Rev. 1989, 89, 1915.
25. (a) Liu, Z. F.; Hashimoto, K.; Fujishima, A. Nature 1990, 347, 658; (b) Sekkat, Z.; Dumont, M. Appl. Phys. B 1992, 54, 486; (c) Kawata, S.; Kawata, Y. Chem. Rev. 2000, 100, 1777.
26. (a) Chen, M.; Besenbacher, F. ACS nano 2011, 5, 1549; (b) Huang, C. F.; Chen, W.; Russell, T. P.; Balazs, A. C.; Chang, F. C.; Matyjaszewski, K. Macromol. Chem. Phys. 2009, 210, 1484.
27. (a) Huang, Y. P.; Wang, H.; Wen, J. H.; Liu, Z. G.; Zhao, F. L.; Lin, W. Z.; Wang, J.; Liang, Z. X. Acta Optica Sinica 2003, 23, 501; (b) Lu, Z.; Zhang, Y.; Wu, Z.; Liu, Y.; Tan, C.; Zhao, C. Chinese J. Lasers 2005, 32, 265; (c) Pedersen, T. G.; Johansen, P. M.; Holme, N. C. R.; Ramanujam, P. S.; Hvilsted, S. Phys. Rev. Lett. 1998, 80, 89.
28. Zhao, R.; Zhan, X.; Yao, J.; Sun, G.; Chen, Q.; Xie, Z.; Ma, Y. Polym. Chem. 2013, 4, 5382.
29. (a) Kuo, S. W.; Cheng, R. S. Polymer 2009, 50, 177; (b) Kuo, S. W.; Tsai, H. T. Macromolecules 2009, 42, 4701; (c) Kuo, S. W.; Hsu, C. H. Polym. Int. 2010, 59, 998.
30. Salimi, K.; Rzayev, Z. M. O.; Pişkin, E. Applied Clay Science 2014, 101, 106.
31. (a) Chen, C.; Qian, Y. C.; Sun, C. B.; Huang, X. J. Soft matter 2015, 11, 6266; (b) Tran, N. T. D.; Jia, Z.; Truong, N. P.; Cooper, M. A.; Monteiro, M. J. Biomacromolecules 2013, 14, 3463; (c) Sakai, F.; Chen, G.; Jiang, M. Polym. Chem. 2012, 3, 954; (d) Kaushlendra, K.; Asha, S. K. Langmuir 2012, 28, 12731; (e) Besheer, A.; Vogel, J. r.; Glanz, D.; Kressler, J. r.; Groth, T.; Mäder, K. Mol. Pharm. 2009, 6, 407.
32. Huang, C. W.; Chang, F. C.; Chu, Y. L.; Lai, C. C.; Lin, T. E.; Zhu, C. Y.; Kuo, S. W. J. Mater. Chem. 2015, 3, 8142.
33. Wu, C.; Szymanski, C.; McNeill, J. Langmuir 2006, 22, 2956.
34. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. nature 1990, 347, 539.
35. Zeina, H.; Philip, P.; Mark, G. J. Mater. Chem. 2011, 21, 1797.
36. Müllen, K.; Scherf, U. Synthesis, Properties and Applications 2006, 897-1091.
37. Lin, Y. Y.; Carbazole/Fluorene-Based Copolymers with Dimestylboron Pendants for Blue Light-Emitting Diodes. Unpublished doctoral dissertation; National Chung Hsing University; Taiwan. 2011.
38. Chennoufi, R.; Bougherara, H.; Gagey-Eilstein, N.; Dumat, B.; Henry, E.; Subra, F.; Mahuteau-Betzer, F.; Tauc, P.; Teulade-Fichou, M. P.; Deprez, E. Chem. Commun. 2015, 51, 14881.
39. Chennoufi, R.; Bougherara, H.; Gagey-Eilstein, N.; Dumat, B.; Henry, E.; Subra, F.; Bury-Mone, S.; Mahuteau-Betzer, F.; Tauc, P.; Teulade-Fichou, M. P.; Deprez, E. Scientific reports 2016, 6, 21458.
40. Webb, J. D.; Neidlinger, H. H.; Connolly, J. S. Polymer Photochemistry 1986, 7, 503.
41. Huang, C.-W.; Wu, P.-W.; Su, W.-H.; Zhu, C.-Y.; Kuo, S.-W. Polym. Chem. 2016, 7, 795.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code