Responsive image
博碩士論文 etd-0613117-193702 詳細資訊
Title page for etd-0613117-193702
論文名稱
Title
季節及日夜變化對大鵬灣鹹水人工濕地水質影響之研究
The Effect of Seasonal and Diurnal/Nightly Variations on Treatment Efficiencies by Salty Water Type of Constructed Wetlands in Dapong Bay
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-29
繳交日期
Date of Submission
2017-07-13
關鍵字
Keywords
人工濕地、大鵬灣國家風景區、水質分析、日夜變化、季節變化
diurnal variations, water quality analysis, Dapeng Bay National Scenic Park, constructed wetlands, seasonal variations
統計
Statistics
本論文已被瀏覽 5719 次,被下載 18
The thesis/dissertation has been browsed 5719 times, has been downloaded 18 times.
中文摘要
廢水處理一直是環工領域的一大議題,包含對廢水中有機物、氮磷營養鹽等污染物質的去除與削減。這些污染物會使水體水質受到破壞,好氧性微生物的生長也會導致溶氧的降低,進而產生厭氧環境促使厭氧菌的生長,因而產生代謝產物的惡臭物質影響水質及空氣品質,是值得關注的重要議題。根據過去研究成果顯示,人工濕地能有效降低廢水中有機物及氮磷營養鹽,位於大鵬灣國家風景區內建構有多座之鹹水型人工濕地群組,以處理灣域周邊養殖及生活污水,並兼具有滯洪之功能。藉由這些人工濕地內所培養之耐鹽性濕地水生植物及土壤沉積物內之微生物等,在不同的水質處理單元中,進行水質淨化之功能。在此研究中所選擇之研究場址係位於大鵬灣東北處之大潭人工濕地,其進流水為附近海水養殖廢水及大潭社區生活污水之混和廢水。該人工濕地內具有淺水池、草澤、沉澱池、深水池等區域之不同處理單元。採樣方面透過連續採樣,一季採三至四天,每六小時採一個樣點進行分析,取得濕地四季及日夜變化下水質的樣品,再經由氨氮、總凱氏氮、亞硝、硝酸、正磷、總磷、BOD及總有機碳等水質分析,探討各項濃度的變化並觀察不同季節及日夜對污染物降低的狀況,藉以找出能有效降低廢水中污染物濃度的環境。春季擁有較好的去除效率,懸浮固體物去除率為43.3 %、總磷為41.2 %、總氮為35.6 %、生化需氧量為 34 %,而夏季則因高溫加速微生物在深水池的生長堆積,導致濕地回溯作用使污染物濃度升高。研究中並發現濕地水質與土壤中總有機碳及總氮含量與濕地所釋出溫室氣體之甲烷(CH4)與氧化亞氮(N2O)呈現正相關之關係,夏季尤其明顯。
Abstract
Wastewater has been a big issue for the environment. Carbohydrates, nitrogen, phosphorus, and other nutrients, when in the water, will cause algae to multiply, lead to low dissolved oxygen to produce an anaerobic environment. Under the action of anaerobic bacteria it will produce pollutants and odor substances. Then it will affect the quality of water and air. So this is an important issue of environment.
  The study notes constructed wetlands that can effectively reduce nutrient concentrations in domestic wastewater. Dapeng Bay National Scenic Area has many salt constructed wetlands to treat the domestic and aquaculture wastewater from surrounding communities, with a variety of wetland plants, animals and microorganisms in the different function of water treatment unit.
  We selected a wetland in Dapeng Bay as study sites: Datam constructed wetland, with an inlet that is domestic wastewater. It also has shallow pond, swamp, sedimentation pond, deep pond and other areas. Sampling aspect is continuous sampling that takes a season for four days, and every six hours take a water sample for analysis. Through the experimental analysis of Suspended Solids, ammonia nitrogen, total Kjeldahl nitrogen, nitrite, nitrate, orthophosphate, total phosphorus, Biochemical oxygen demand, and total carbon water quality index. The aim is to investigate the concentration of pollutant-change and observe the different seasons of the contaminant reduction condition. This is so as to find out the environment and climate which can effectively reduce the concentration of pollutants in wastewater.
  Spring has a better removal efficiency. Suspended solids removal efficiency of 43.3%, total phosphorus of 41.2%, total nitrogen of 35.6%, biochemical oxygen demand of 34%. Due to summer's high temperature accelerated microbial growth in the deep pool, resulting in wetland pollutant concentration increased. The results showed that the water quality of wetland and the total organic carbon and total nitrogen in soil were positively correlated with methane (CH4) and nitrous oxide (N2O) released from greenhouse gases, especially in summer.
目次 Table of Contents
學位論文審定書 i
誌謝 iii
摘要 iv
目錄 vii
第一章 前言 1
1.1 研究起緣 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1濕地背景介紹 4
2.1.1濕地定義 4
2.1.2 濕地的功能及價值 5
2.2人工濕地 6
2.2.1人工濕地之種類 6
2.2.2人工濕地處理系統之分類 7
2.3濕地去除污染物機制與影響 9
2.3.1懸浮固體物 9
2.3.2 磷的去除機制 10
2.3.3 氮的去除機制 12
2.3.4 生化需氧量與總有機碳 17
第三章 材料與方法 18
3.1 研究流程 18
3.2 研究地點 20
3.3 採樣時間 23
3.4 氣象條件現況 24
3.5 水質項目保存、分析方法及儀器設備 26
3.5.1 水質保存方法及保存期限 26
3.5.2 各水質項目分析方法及分析儀器 26
3.6 數據統計分析之方法 30
3.7 溫室氣體連續監測方法及儀器 31
第四章 結果與討論 32
4.1 現場值水質指標濃度變化趨勢 32
4.1.1 水溫 32
4.1.2 鹽度及導電度 34
4.1.3 pH 37
4.1.4 溶氧 39
4.2 懸浮固體物濃度變化趨勢 41
4.3 磷濃度變化趨勢 43
4.3.1 正磷 43
4.3.2 總磷 45
4.4 氮濃度變化趨勢 47
4.4.1 亞硝酸鹽 47
4.4.2 硝酸鹽 49
4.4.3 氨氮 51
4.4.4 有機氮 53
4.4.5 總氮 55
4.5 生化需氧量濃度變化趨勢 57
4.6 水中總有機碳濃度變化趨勢 59
4.7 不同季節對污染物去除率比較 61
4.9 溫室氣體與水質參數之關係 63
4.9.1 氧化亞氮與水中總氮之濃度變化趨勢及相關性 63
4.9.2 二氧化碳及甲烷與水中總有機碳之濃度變化趨勢及相關性 68
4.10日夜變化對污染物濃度影響比較 71
第五章 結論與建議 72
5.1 結論 72
5.2 建議 74
參考資料 75
參考文獻 References
Barnes, D., & Bliss, P. J. (1983). Biological control of nitrogen in wastewater treatment: E. & FN Spon.

Blamey, L. K., Shannon, L. J., Bolton, J. J., Crawford, R. J., Dufois, F., Evers-King, H., . . . Rouault, M. (2015). Ecosystem change in the southern Benguela and the underlying processes. Journal of Marine Systems, 144, 9-29.

Boyd, C. E. (1969). Production, mineral nutrient absorption, and biochemical assimilation by Justicia americana and Alternanthera philoxeroides. Archiv fur Hydrobiologie.

Davis, T. J. (1994). The Ramsar Convention manual: a guide to the convention on wetlands of international importance especially as waterfowl habitat.

Dunne, E., & Reddy, K. (2005). Phosphorus biogeochemistry of wetlands in agricultural watersheds. Nutrient Management in Agricultural Watersheds: a Wetland Wolution, 105-119.

Gambrell, R., & Patrick Jr, W. (1978). Chemical and microbiological properties of anaerobic soils and sediments. Plant life in anaerobic environments, 375-423.

Garfí, M., Pedescoll, A., Bécares, E., Hijosa-Valsero, M., Sidrach-Cardona, R., & García, J. (2012). Effect of climatic conditions, season and wastewater quality on contaminant removal efficiency of two experimental constructed wetlands in different regions of Spain. Science of the total environment, 437, 61-67.


Hauck, R. (1984). Atmospheric Nitrogen. Chemistry, Nitrification, Denitrification, and their Interrelationships The Natural Environment and the Biogeochemical Cycles (pp. 105-125): Springer.

Kadlec, R., & Knight, R. (1996). Treatment wetlands. CRC. Baca Raton, FL.

Kadlec, R. H., Knight, R. L., Vymazal, J., Brix, H., Cooper, P., & Haberl, R. (2000). Constructed wetlands for pollution control. IWA, London.

Lambers, H., Chapin III, F. S., & Pons, T. L. (1998). Photosynthesis, respiration, and long-distance transport Plant physiological ecology (pp. 10-153).

Mitsch, W., & Gosselink, J. (1993). Wetlands Van Nostrand Reinhold. New York, 722.

Pages, J., & Citeau, J. (1990). Rainfall and salinity of a Sahelian estuary between 1927 and 1987. Journal of Hydrology, 113(1), 325-341.

Panfili, J., Mbow, A., Durand, J.-D., Diop, K., Diouf, K., Thior, D., . . . Laë, R. (2004). Influence of salinity on the life-history traits of the West African black-chinned tilapia (Sarotherodon melanotheron): comparison between the Gambia and Saloum estuaries. Aquatic Living Resources, 17(1), 65-74.

Paul, S. C. I., Mastrototaro, J. J., Schnabel, N. M., Lord, P. C., Van Antwerp, W. P., & Clark, R. D. (1996). Transcutaneous sensor insertion set: Google Patents.

Poach, M. E., Hunt, P. G., Reddy, G. B., Stone, K. C., Johnson, M. H., & Grubbs, A. (2004). Swine wastewater treatment by marsh–pond–marsh constructed wetlands under varying nitrogen loads. Ecological Engineering, 23(3), 165-175.

Reddy, G., Hunt, P. G., Phillips, R., Stone, K., & Grubbs, A. (2001). Treatment of swine wastewater in marsh-pond-marsh constructed wetlands. Water Science and Technology, 44(11-12), 545-550.


Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of wetlands: science and applications: CRC press.

Saeed, T., & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. Journal of environmental management, 112, 429-448.

Savant, N., & De Datta, S. (1982). Nitrogen transformations in wetland rice soils. Advances in Agronomy, 35, 241-302.

Scholz, M. (2016). Chapter 34 - Seasonal Assessment of Vertical-Flow Wetlands Treating Domestic Wastewater Wetlands for Water Pollution Control (Second Edition) (pp. 389-400).

Scholz, M. (2016). Chapter 34 - Seasonal Assessment of Vertical-Flow Wetlands Treating Domestic Wastewater Wetlands for Water Pollution Control (Second Edition) (pp. 389-400).

Shaw, S. P., & Fredine, C. G. (1956). Wetlands of the United States: their extent and their value to waterfowl and other wildlife.

Songliu, L., Hongying, H., Yingxue, S., & Jia, Y. (2009). Effect of carbon source on the denitrification in constructed wetlands. Journal of Environmental Sciences, 21(8), 1036-1043.

Sun, H., Zhang, H., Yu, Z., Wu, J., Jiang, P., Yuan, X., & Shi, W. (2013). Combination system of full-scale constructed wetlands and wetland paddy fields to remove nitrogen and phosphorus from rural unregulated non-point sources. Environmental geochemistry and health, 35(6), 801-809.

Vymazal, J. (1995). Algae and element cycling in wetlands: Lewis Publishers Inc.

Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the total environment, 380(1), 48-65.

Yeh, T., Chou, C., & Pan, C. (2009). Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations. Desalination, 249(1), 368-373.

方偉達. (2006). 聽, 濕地在唱歌. 高雄: 高雄市政府工務局.
江純安. (2013). 紅樹林於鹹水型人工濕地對污染物去除效率之硏究.
柯清水. (2016). 養魚先養水. 翠湖水草栽培研究所.
郭進慶. (2007). 社區排水系統暴雨初期污水處理規劃之可行性研究.
陳麗瑜. (2005). 都會濕地公園水質淨化功能及規劃策略之研究.
黃捷茂. (2014). 利用水質指標與優養化探討中都濕地與愛河中都段之關係. 中山大學海洋環境及工程學系研究所學位論文.
蔡承斌. (2016). 鹹水人工濕地溫室氣體排放連續監測及碳吸存解析. 中山大學環境工程研究所學位論文.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code