Responsive image
博碩士論文 etd-0613118-120608 詳細資訊
Title page for etd-0613118-120608
論文名稱
Title
運用胺官能基改質經微波再生之廢棄汽機車觸媒以去除室內二氧化碳之研究
Reducing indoor CO2 with spent automotive catalysts regenerated by the microwave system and modified by amine functional group.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
150
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-12
繳交日期
Date of Submission
2018-07-13
關鍵字
Keywords
微波法再生、沸石、室內二氧化碳、汽車廢觸媒、固體廢棄物減量
Spent Automotive Catalyst, Zeolite, Indoor CO2, Microwave Regeneration, Reduction of Solid Wastes
統計
Statistics
本論文已被瀏覽 5662 次,被下載 0
The thesis/dissertation has been browsed 5662 times, has been downloaded 0 times.
中文摘要
目前回收業及專家學者大部分著重於回收汽車廢觸媒中高價之鉑族金屬,然而萃取完畢後剩餘之載體通常做為固體廢棄物掩埋,不僅造成掩埋場土地空間縮減,更浪費其與沸石組成相近之特色。汽車廢觸媒載體本身由二氧化矽(SiO2)及三氧化二鋁(Al2O3)構成,即為去除空氣污染物之沸石(Zeolite)組成所需元素。沸石為一具有選擇性、結構穩定、可改質及再生率佳之吸附劑,適合吸附污染物。故本研究主要目的為將固體廢棄物減量與空氣污染物去除進行跨領域結合,並發展一套快速微波再生技術。將汽車廢觸媒載體研磨後利用氫氧化鈉溶液活化及增加比表面積,透過微波法最佳操作條件下生,可將原本比表面積提升9.86 倍。後續利用含浸法將胺官能基(AMP、MEA 及混合胺)轉移至載體上,在管柱吸收CO2 試驗( 1%,1L/min )與甲醛試驗(1ppm,1L/min),得知每克AMP、MEA 及混合胺再生觸媒,分別可吸收38.9、29.5 及36.5 毫克二氧化碳以及5.14x10-3、5.09x10-3 及4.42x10-3 毫克甲醛。針對CO2進行10次吸附脫付循環後,AMP、MEA及MIX個別吸附效果分別約維持84.6%、72.9%及80.3%。實場試驗AMP、MEA 及混合胺改良之再生沸石,分別將CO2 濃度由1229ppm 降至735ppm、1222ppm 降至745ppm 以及1230ppm 降至743ppm。
Abstract
Recently, the remaining carrier was usually buried as solid wastes. It’s not only resulted in the reduction of the landfill space but also wasting its characteristics similar with zeolites. Because the components of the carrier are silicon dioxide (SiO2) and aluminum oxide (Al2O3), which are the composition of zeolite precisely. First, the microwave technology with the features of fast reaction and low cost is used to regenerate the carrier and enhance its specific surface area. Second, using the impregnation method to shift the amine functional that has the ability of adsorbing CO2 to the carrier, then manufacturing as a filter cloth. Third, the pure CO2 and formaldehyde are subjected to the column filled with the filter cloth to execute the air pollution elimination experiment. At last, the filter cloth would also be set into the air cleaner to execute the elimination experiment of CO2 and formaldehyde at the office. Through the microwave to modify surface area, surface area of catalysts raised to 9.73 times. The different amino, each adsorption capacity is 30.6 mg-CO2/g-AMP、22.6 mg-CO2/g-MEA、28.5 mg-CO2/g-MIX in test string. At the office, AMP、MEA、MIX each one reduce the CO2 concentration to 735 ppm、745 ppm and 743 ppm.
目次 Table of Contents
論文審定書 i
論文授權書 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 ix
表目錄 xv
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 5
第二章 文獻探討 6
2-1 汽車觸媒轉化器 6
2-1-1 廢觸媒之產生 6
2-1-2 廢觸媒前處理及再生 8
2-2 室內空氣品質 10
2-2-1室內空氣污染物介紹 11
2-3 二氧化碳捕獲技術 14
2-4 胺類處理CO2技術 16
3.4-1 胺類去除CO2反應機制 17
3-4-1 胺類含浸於固體吸附材去除CO2之先例 17
2-5 空氣清淨機清除原理 19
第三章 研究與實驗方法 20
3-1 研究流程 20
3-1-1 汽車廢觸媒前處理 20
3-1-2 鹼熔法及微波法再生載體 20
3-1-3 再生載體特性分析 23
3-1-4 再生載體含浸胺類 24
3-1-5 再生載體去除管柱內CO2之試驗 25
3-2 實驗流程圖 27
3-3 分析方法與材料設備 28
3-3-1 儀器設備 28
3-3-2 實驗藥品耗材 28
3-3-3 刀磨機前處理 29
3-3-4 鍛燒爐 29
3-3-5 密閉式微波設備 30
3-3-6 環境掃描電子顯微鏡 31
3-3-7 比表面積分析儀 32
3-3-8 X光粉末繞射儀 32
3-3-9 傅立葉轉換紅外線光譜儀(ATR-FTIR) 33
3-3-10 恆溫水浴槽 34
3-3-11 感應耦合電漿質譜儀(ICP) 34
第四章 結果與討論 39
4-1 廢棄觸媒的基礎分析 39
4-2 鹼熔法再生載體 46
4-2-1 以變異數分析與模擬估計探討主要控制變因 46
4-2-2 比較不同鍛燒時間鹼熔法再生效果 49
4-2-3 鹼熔法再生載體分析 49
4-3 微波法再生載體 55
4-3-1 以變異數分析與模擬估計探討主要控制變因 55
4-3-4 比較不同功率微波法再生效果 59
4-3-5 微波法再生載體分析 59
4-4 廢汽機車觸媒載體活化再生結論 65
4-5 再生載體含浸胺類 66
4-6 2-氨基甲基丙醇(AMP) 67
4-6-1 比較不同時間含浸AMP效果 67
4-6-2 比較不同重量百分比含浸AMP效果 71
4-6-3 比較不同溫度含浸AMP效果 74
4-7 單乙醇胺(MEA) 80
4-7-1 比較不同重量百分比含浸MEA效果 80
4-7-2 比較不同時間含浸MEA效果 83
4-7-3 比較不同溫度含浸MEA效果 87
4-8 混合胺(AMP 12% w/w + MEA 18% w/w) 92
4-8-1 比較不同重量百分比含浸MIX效果 92
4-8-2 比較不同時間含浸MIX效果 95
4-8-3 比較不同溫度含浸MIX效果 99
4-9 管柱試驗 104
4-9-1 再生載體去除管柱內CO2試驗 104
4-9-2 再生載體去除管柱內甲醛試驗 107
4-9-3 CO2吸附重複試驗 109
4-10 結合空氣清淨機進行實場室內污染物去除之試驗 110
4-11 製備成本分析 114
第五章 結論與建議 116
5-1 結論 116
5-2 建議 118
第六章 參考文獻 119
參考文獻 References
Abotteen S., Dufresne P. Effective use of catalysts through catalyst regeneration. Al Bilad Catalyst Co., Jubail, Saudi Arabia. 2012.
Ates A., Akgül G. Modification of natural zeolite with NaOH for removal of manganese in drinking water. Powder Technology. 2016; 287: 285-91.
Agathokleous E., Kitao M., Calabrese E. J. Emission of volatile organic compounds from plants shows a biphasic pattern within an hormetic context. Environmental Pollution. 2018; 239: 318-21.
Aminu M. D., Nabavi S. A., Rochelle C. A., Manovic V. A review of developments in carbon dioxide storage. Applied Energy. 2017; 208: 1389-419.
Ates A. Effect of alkali-treatment on the characteristics of natural zeolites with different compositions. Journal of Colloid and Interface Science. 2018; 523: 266-81.
AirBetter Organization. Best Air Purifier and Reviews, Consumer Report. Tips and Reviews to Healthier Air Life – AirBetter.org. 2015.
Akhtar F., Andersson L., Ogunwumi S., Hedin N., Bergströma L. Structuring adsorbents and catalysts by processing of porous powders. J European Ceramic Society. 2014; 34: 1643-66.
Argyle M. D., Bartholomew C. H. Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts. 2015; 5: 145-269.
Bekö G., Allen J. G., Weschler C. J., Vallarino J., Spengler J. D. Impact of Cabin Ozone Concentrations on Passenger Reported Symptoms in Commercial Aircraft. PLoS ONE. 2015; 10(5): e0128454.
Beulertz G., Votsmeier M., Moos R. Effect of propene, propane, and methane on conversion and oxidation state of three-way catalysts: A microwave cavity perturbation study. Appl Catal B Env. 2015; 165: 369-77.
Chatzidiakou L., Mumovic D., Summerfield A. Is CO2 a good proxy for indoor air quality in classrooms? Part 2: Health outcomes and perceived indoor air quality in relation to classroom exposure and building characteristics. Building Serv Eng Res Technol. 2015; 36: 162-81.
Connell K. C. O., Monnier J, R., Regalbuto J. R. The curious relationship of sintering to activity in supported gold catalysts for the hydrochlorination of acetylene. Applied Catalysis B: Environmental. 2018; 225: 264-72.
Chiu C. F., Chen M. H., Chang F. H. Carbon Dioxide Concentrations and Temperatures within Tour Buses under Real-Time Traffic Conditions. PLoS ONE. 2015; 10(4): e0125117.
Coninck H., Benson S. M. Carbon Dioxide Capture and Storage: Issues and Prospects. Annual Review of Environment and Resources. 2014; 39: 243-70.
Čorňák Š., Horák V., Chládek Z., Ulman J. The evaluation of air quality in military vehicles. Science & Military. 2012; 1: 50–54.
Costantini A., Vaudano E., Cravero M. C., Petrozziello M., Bernasconi A., Garcia-Moruno E., “Application of dry-ice blasting for barrels treatment. BIO Web of Conference. 2015; 5: 4.
Cui G., Xin Y., Jiang X., Dong M., Li J., Wang P., Zhai S., Dong Y., Jia J., Yan B. Safety Profile of TiO2-Based Photocatalytic Nanofabrics for Indoor Formaldehyde Degradation. Int. J. Mol. Sci. 2015; 16: 27721–29.
Chang A. C. C., Chuanh S. S. C., Gray M., Soong Y. In-side infrared study of CO2 adsorption on SBA-15 grafted with r-(aminopropyl)trirthoxysilane. Energy Fuels. 2003; 17: 468-473.
Cinke M., J. Li, Jr CW. Bauschlicher, A. Ricca, M. Meyyappan, CO2 adsorption in single walled carbon nanotubes. Chem. Phys. Lett. 2003; 376: 761-6.

Dai Y., Liu S., Zheng N. C2H2 Treatment as a Facile Method to Boost the Catalysis of Pd Nanoparticulate Catalysts. J. Am. Chem. Soc. 2014; 136(15): 5583-86.
Diglio G., Bareschino P., Mancusi E., Pepe F. Chemical Looping Reforming: Impact on the Performances Due to Carbon Fouling on Catalyst. Computer Aided Chemical Engineering. 2016; 38: 229-34.
Du P., Yuan P., Liu D., Wang S., Song H., Guo H. Calcination-induced changes in structure, morphology, and porosity of allophane. Applied Clay Science. 2018; 158: 211-18.
Dietrich M., Jahn C., Lanzerath P., Moos R. Microwave-Based Oxidation State and Soot Loading Determination on Gasoline Particulate Filters with Three-Way Catalyst Coating for Homogenously Operated Gasoline Engines. Sensors. 2015; 15: 21971-88.
Decolatti H. P., Dalla C. B.O., Querini C.A. Dehydration of glycerol to acrolein using H-ZSM5 zeolite modified by alkali treatment with NaOH. Microporous and Mesoporous Materials. 2015; 204: 180-189.
Egger T., Egger L. S., Fieg G. Scale and causes of catalyst activity loss in enzymatic catalyzed reactive distillation. Chemical Engineering Science. 2018; 178: 324-34.
Fernandez S., OstraatJohn M. L., Lawrence A., Zhang K. Tailoring the hierarchical architecture of beta zeolites using base leaching and pore-directing agents. Microporous and Mesoporous Materials. 2018; 263: 201-9.
Farmer M. E. and Baran P. S. Organic chemistry: A cure for catalyst poisoning. Nature. 2015; 524: 164-5.
Folger P. Carbon Capture: A Technology Assessment. Specialist in Energy & Natural Resources Policy. 2013.


Fornalczyk A., Golak S., Saternus M. Model of Infiltration of Spent Automotive Catalysts by Molten Metal in Process of Platinum Metals Recovery. Mathematical Problems in Eng. 2013; 7: 123-6.
Frazier R. S., Jin E., Kumar A. Life Cycle Assessment of Biochar versus Metal Catalysts Used in Syngas Cleaning. Energies. 2015; 8: 621-44.
Fuoco F. C., Stabile L., Buonanno G., Trassiera C. V., Massimo A., Russi A., Mazaheri M., Morawska L., Andrade A. Indoor Air Quality in Naturally Ventilated Italian Classrooms. Atm. 2015; 6: 1652-75.
Gueroult R., Rax J. M., Fisch N. J. Opportunities for plasma separation techniques in rare earth elements recycling. Journal of Cleaner Production. 2018; 182: 1060-69.
García-Abuín A., Gómez-Díaz D., Navaza J. M., Rumbo A. CO2 capture by pyrrolidine: Reaction mechanism and mass transfer. AlChE J. 2014; 60: 1107-19.
Goscianska J., Koniarz M. P., Frankowski M., Franus M., Panek R., Franus W. Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash. Journal of Colloid and Interface Science. 2018; 513: 72-81.
Gawrońska H., Bakera B. Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual Atmos Health. 2015; 8: 265-72.
Gholami M, Talaie M. R., Aghamiri S. F. CO2 adsorption on amine functionalized MCM-41: Effect of bi-modal porous structure. JTICE. 2015: 1-5.
Gholami R., Alyani M., Smith K. J. Deactivation of Pd Catalysts by Water during Low Temperature Methane Oxidation Relevant to Natural Gas Vehicle Converters. Catalysts. 2015; 5: 561-94.
Gray M.L., Soong Y., Champagne K. J., Pennline H., Baltrus J. P., Steven Jr R. W., Khatri R., Chuang S. S. C., Filburn T. Improved immobilized carbon dioxide capture sorbents. Fuel Processing Technology. 2005; 86: 1449-55.

Hiyoshi N., Yogo K., Yashima T. Adsorption characteristics of carbon dioxide on organically functionalizred SBA-15. Microporus Mesoporous Mater. 2005; 84:357-365.
Hudspeth J. M., Kvashnina K. O., Kimber S. A. J., Mitchell E. P. Synchrotron X-Ray Scattering as a Tool for Characterising Catalysts on Multiple Length Scales. 2015; 70: 429-36.
IARC. Outdoor air pollution a leading environmental cause of cancer deaths. 2013.
Jurado S. R., Bankoff A. D. P., Sanchez A. Indoor air quality in brazilian universities. Int. J. Environ. Res. Public Health. 2014; 11: 7081–93.
Kawanishi M., Matsuda T., Yagi T. Genotoxicity of formaldehyde: molecular basis of DNA damage and mutation. Front. Environ. Sci. 2014; 2: 36.
Klean Environmental Technology Co., Ltd. The Purify Process of the ESP Cleaner. 2012.
Kamarudin K. S. N., Zaini N., Khairuddin N. E. A. CO2 removal using amine-functionalized kenaf in pressure swing adsorption system. Journal of Environmental Chemical Engineering. 2018; 6: 549-59.
König R. Y. G., Schwarze M., Schomäcker R., Stubenrauch C. Catalytic Activity of Mono- and Bi-Metallic Nanoparticles Synthesized via Microemulsions. Catalysts. 2014; 4(3): 256-75.
Kumar M., Rattan G., Prasad R. Catalytic Abatement of Methane Emission from CNG Vehicles: An Overview. Canadian Chemical Transactions. 2015; 3(4): 381-409
Kumar R., Barth M. C., Madronich S., Naja M., Carmichael G. R., Pfister G. G., Knote C., Brasseur G. P., Ojha N., Sarangi T. Effects of dust aerosols on tropospheric chemistry during a typical pre-monsoon season dust storm in northern India. Atomos. Chem. Phys. 2014; 14: 6813-34.

Lupescu J. A., Schwank J. W., Fisher G. B., Hangas J., Peczonczyk S. L., Paxtonb W. A. Pd model catalysts: Effect of air pulse length during redox aging on Pd redispersion. Applied Catalysis B: Environmental.2018; 223: 76-90.
Lavra L., Catini A., Ulivieri A., Capuano R., Salehi L. B., Sciacchitano S., Bartolazzi A., Nardis S., Paolesse R., Martinelli E., Natale C. D. Investigation of VOCs associated with different characteristics of breast cancer cells. Scientific Reports. 2015; 5: Article No. 13246.
Liang Y., Ding X., Zhao M., Wang J., Chen Y. Effect of valence state and particle size on NO oxidation in fresh and aged Pt-based diesel oxidation catalysts. Applied Surface Science. 2018; 443: 336-44.
Lazaridis M., Costa C. N., Katsivela E., Glytso T., Kopanakis I., Raisi L., Theologides C. P., Piskopianou Iskopianou C., Chatziona V. K., Constantinou B. K., Violaki E., Galenianou A., Kaloutsakis A., Kalogerakis N. Indoor Air Quality Measurements in Museum Microenvironments. Proceedings of the 14th International Conference on Environmental Science and Technology. 2015.
Lucattini L., Poma G., Covaci A., Boer J., Lamoree M. H., Leonards P. E. G. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chemosphere. 2018; 201: 466-82.
Lee J., Kim Y. Chemical Dissolution of Iridium Powder Using Alkali Fusion Followed by High-Temperature Leaching, Materials Transactions. 2011; 52(11): 2067-70.
Lee S. C., Hsieh C. C., Chen C. H., Chen Y. S. CO2 Adsorption by Y-Type Zeolite Impregnated with Amines in Indoor Air. AAQR. 2013; 13: 360-66.
Less B., Mullen N., Singer B. Walker I. Indoor air quality in 24 California residences designed as high-performance homes. Science and Technology for the Built Environment. 2015; 21(1): 14-24.
Leung D. Y. C., Chan C. Outdoor-indoor air pollution in urban environment: challenges and opportunity. Environmental Science. 2015; 2: Article No. 69.
Lokhande S., Doggali P., Rayalu S., Devotta S., Labhsetwar N. High catalytic activity of Pt–Pd containing USY zeolite catalyst for low temperature CO oxidation from industrial off gases. Atmospheric Pollution Res. 2015; 6: 589‐95.
Li M. H., Chang B. C. Solubility of mixtures carbon dioxide and hydrogen sulfide in water + monoethanolamine + 2-amino-2methyl-1-propanol. Chemical and Engineering. 1995; 40: 328-31.
Luberti M., Kim Y. H., Lee C. H., Ferrari M. C., Ahn H. New momentum and energy balance equations considering kinetic energy effect for mathematical modelling of a fixed bed adsorption column. Adsorption. 2015; 21(5): 353-63.
Lu C., H. Bai, B. Wu, F. Su, JF. Hwang, Comparative study of CO2 capture by carbon nanotubes, activated carbon and zeolite. Energy Fuels 22. 2008; 3050-56.
Minju N., Abhilash P., Nairb B. N., Mohamed A. P., Ananthakumar S. Amine impregnated porous silica gel sorbents synthesized from water–glass precursors for CO2 capturing. Chemical Engineering Journal 2015; 269: 335-42.
Marsal A., Cuadros S., Ollé L., Bacardit A., M A., Font J., Manich. Formaldehyde scavengers for cleaner production: A case study focused on the leather industry. Journal of Cleaner Production. 2018; 186: 45-56.
Mittal N., Samanta A., Sarkar P., Gupta R. Postcombustion CO2 capture using N-(3-trimethoxysilylpropyl) diethylenetriamine-grafted solid adsorbent. Energy Science & Engineering. 2015; 3(3); 207-20.
McDaniel M. Manipulating polymerization chemistry of Cr/silica catalysts through calcination. Applied Catalysis A: General. 2017; 542: 392-410.
Maroto-Valer, M. M., Z. Tang, Y. Zhang, CO2 capture by activated and impregnated anthracites. Fuel Processing Technology. 2005; 86: 1487-1502.
Mohamed O., Bensaheb F., Bano H., Behl S., Jarrar M. Evaluating the role of the appropriate catalysts on the efficacy of biodiesel production from waste cooking oil. Sch. Acad. J. Biosci. 2015; 3(5): 468-73.
Maroto-Valer, M.M., Z. Lu, Y. Zhang, Z. Tang, Sorbents for CO2 capture from high carbon fly ashes. Waste Management. 2008; 28: 2320-28.
Meng F., Zhang S., Oh Y., Zhou Z., Shin H. S., Chaed S. R. Fouling in membrane bioreactors: An updated review. Water Research.2017; 114: 151-80.
Mushtaq A., Mukhtar H. B., Shariff A. M. FTIR Study of Enhanced Polymeric Blend Membrane with Amines. Engineering and Technology. 2014; 7(9): 1811-20.
Nowicki J., Mokrzycki Ł., Sulikowski B. Synthesis of Novel Perfluoroalkylglucosides on Zeolite and Non-Zeolite Catalysts. Molecules. 2015; 20: 6140-52.
Nwaoha C., Chintana S., Paitoon T., Teeradet S., Wichitpan R., Raphael I., Mohammed J. AL-M., Abdelbaki B. Carbon dioxide (CO2) capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends. Journal of Natural Gas Science and Engineering2016; 33: 742-50.
Nwaoha C., Idem R., Supap T., Saiwan C., Tontiwachwuthikul P., Rongwong W., Marri M. J. A., Benamor A. Heat duty, heat of absorption, sensible heat and heat of vaporization of 2–Amino–2–Methyl–1–Propanol (AMP), Piperazine (PZ) and Monoethanolamine (MEA) tri–solvent blend for carbon dioxide (CO2) capture. Chemical Engineering Science. 2017; 170: 23-36.
O’Neill B. J., Jackson D. H. K., Lee J., Canlas C., Stair P. C., Marshall C. L., Elam J. W., Kuech T. F., Dumesic J. A., Huber G. W. Catalyst Design with Atomic Layer Deposition. ACS Catal. 2015; 5: 1804−25.
Painuly A. S. Separation and recovery of vanadium from spent vanadium pentaoxide catalyst by Cyanex 272.Painuly Env Sys Res. 2015; 4: 7.
Prezepiórski J, M. Skrodzewicz, AW. Morawski, High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl. Surf. Sci. 2004; 225: 235-242.
Pinton N., Vidal M. V., Signoretto M., Arias A. M., Corberán V. C. Ethanol steam reforming on nanostructured catalysts of Ni, Co and CeO2: Influence of synthesis method on activity, deactivation and regenerability. Catalysis Today. 2017; 296: 135-43.
Park H. S., Lee J. S., Han J. Y., Park S., Park J., Min B. R. CO2 Fixation by Membrane Separated NaCl Electrolysis. Energies. 2015; 8: 8704-15.
Pfeiffe H., Rodríguez-Mosqueda R. High CO2 Capture in Sodium Metasilicate (Na2SiO3) at Low Temperatures (30-60 degrees C) through the CO2-H2O Chemisorption Process. The Journal of Physical Chemistry C. 2013; 117(26): 13452-61.
Quale S., Rohling V. The European Carbon dioxide Capture and Storage Laboratory Infrastructure (ECCSEL). Green Energy & Environment. 2016; 1:180-94.
Reinoso D., Adrover M., Pedernera M. Green synthesis of nanocrystalline faujasite zeolite. Ultrasonics Sonochemistry. 2018; 42: 303-9.
Ruiz-Castillo P., Blackmond D. G., Buchwald S. L. Rational Ligand Design for the Arylation of Hindered Primary Amines Guided by Reaction Progress Kinetic Analysis. Journal of the American Chemical Society. 2015; 137(8): 3085-92.
Rytter E., Holmen A. Deactivation and Regeneration of Commercial Type Fischer-Tropsch Co-Catalysts—A Mini-Review. Catalyst. 2015; 5: 478-99.
Saad S. M., Andrew A. M., Shakaff A. Y. M., Saad A. R. M., Kamarudin A. M. Y., Zakaria A. Classifying Sources Influencing Indoor Air Quality Using Artificial Neural Network. Sensors. 2015; 15: 11665-84.

Shaula A. L., Karavai O. V., Ivanova Y. A., Mikhalev S. M., Tarelho L. A. C. Strontium ferrite as a three-way catalyst component. Materials Letters. 2018; 216: 273-6.
Sieniutycz S., Szwast Z. 8 – Reactors with catalyst decay and regeneration. Optimizing Thermal, Chemical, and Environmental Systems. 2018; 237–300.
Safari J., Naseh S., Zarnegar Z., Akbari Z. Applications of microwave technology to rapid synthesis of substituted imidazoles on silica-supported SbCl3 as an efficient heterogeneous catalyst. Journal of Taibah University for Science. 2014; 8(4): 323-30.
Sousa L. V., Silva A. O. S., Silva B. J. B., Quintela P. H. L., Barbosa C. B. M., Fréty R., Pacheco J. G. A. Preparation of zeolite P by desilication and recrystallization of zeolites ZSM-22 and ZSM-35. Materials Letters. 2018; 217: 259-62.
Stephen J. M., Claudia F. Ma., Stefano B., Martin B. S., Xianfeng F. Microwave swing regeneration of aqueous monoethanolamine for postcombustion CO2 capture. Applied Energy. 2017; 192: 126–133.
Su F., C. Lu, W. Cnen, H. Bai, J. F. Hwang, Capture of CO2 from flue gas via multiwalled carbon nanotubes. Science of the Total Environment. 2009; 407: 3017-23.
Sahu K. K., Agrawal A., Mishra D. Hazardous waste to materials: recovery of molybdenum and vanadium from acidic leach liquor of spent hydroprocessing catalyst using alamine. J Env. Manage 2013; 125: 68–73.
Saternus M., Fornalczyk A., Willner J. Production of Platinum from Primary and Secondary Materials-A Review. 2015.
Sayari A., Heydari-Gorji A., Yang Y. CO2-Induced Degradation of Amine-Containing Adsorbents: Reaction Products and Pathways. J. Am. Chem. Soc. 2012; 134(33): 13834-42.

Seoane B., Coronas J., Gascon I., Benavides M. E., Karvan O., Caro J., Kapteijn F., Gascon J. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture. Chem. Soc. Rev. 2015; 44(8): 2421-54.
Smejkal Q., Rodemerck U., Wagner E., Baerns M. Economic Assessment of the Hydrogenation of CO2 to Liquid Fuels and Petrochemical Feedstock. Chemie Ingenieur Technik. 2014; 86: 679–86.
Sorrels J. L., Randall D. D., Schaffner K. S., Fry C. R. Selective Catalytic Reduction. Health and Environmental Impacts Division, Office of Air Quality Planning and Standards, USEPA. 2015.
Speybroeck V. V., Hemelsoet K., Joos L., Waroquier M., Bell R. G., Catlow C. R. A. Advances in theory and their application within the field of zeolite chemistry. Chem. Soc. Rev. 2015; 44: 7044-11.
Sriprom P., Neramittagapong S., Lin C., Wantala K., Neramittagapong A., Grisdanurak N. Optimizing chemical oxygen demand removal from synthesized wastewater containing lignin by catalytic wet-air oxidation over CuO/Al2O3 catalysts. J. Air & Waste Management Association. 2015; 65(7): 828-36.
Su F. S., Lu C. S., Kuo S. C., Zeng W. Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites. 2010; 24: 1441-48.
Shoaibi A. A., Reddy K. S. K., Srinivasakannan C. A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits. New Carbon Materials. 2012; 5: 344-51.
Subagyono D. J. N., Liang Z., Knowles G. P., Chaffee A. L. Amine modified mesocellular siliceous foam (MCF) as a sorbent for CO2. Chemical engineering research and design. 2011; 89: 1647-57.
Sun Y., Zhang Z., Liu L., Wang X. Heat Recovery from High Temperature Slags: A Review of Chemical Methods. Energies. 2015; 8: 1917-35.
Suoranta T., Zugazua O., Niemelä M., Perämäki P. Recovery of Pd, Pt, Rh and Ru from catalyst materials using microwave-assisted leaching and cloud point extraction. Hydrometallurgy. 2015; 154: 56-62.
Takagi T., Uchiyama K., Naito Y. The Therapeutic Potential of Carbon Monoxide for Inflammatory Bowel Disease. Digestion. 2015; 91: 13-8.
Thunyasirinon C., Sribenjalux P., Supothina S., Chuaybamroong P. Enhancement of Air Filter with TiO2 Photocatalysis for Mycobacterium Tuberculosis Removal. AAQR. 2015; 15: 660-10.
Ullah R., Atilhan M., Aparicio S., Canlier A., Yavuz C. T. Insights of CO2 adsorption performance of amine impregnated mesoporous silica (SBA-15) at wide range pressure and temperature conditions. International Journal of Greenhouse Gas Control. 2015; 43: 22-32.
Volli V., Purkait M. Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production. J Hazard Mater. 2015; 297: 101-11.
Varga T., Puskás R., Grósz A., Sápi A., Oszkó A., Kukovecz Á., Kónya Z. Mesoporous carbon-supported Pd nanoparticles with high specific surface area for cyclohexene hydrogenation: Outstanding catalytic activity of NaOH-treated catalysts. Surface Science. 2016; 648: 114-9.
Wang X., Guo Q., Zhao J., Chen L. Mixed amine-modified MCM-41 sorbents for CO2 capture. International Journal of Greenhouse Gas Control. 2015; 37: 90–8.
Wargocki P., Kuehn T. H., Burroughs H. E. B., Muller C. O., Conrad E. A., Saputa D. A., Fisk W. J., Siegel J. A., Jackson M. C., Veeck A., Tompkins D., Francisco P. ASHRAE Position Document on Filtration and Air Cleaning. ASHRAE. 2015.
Wei J., Shi J., Pan H., Zhao W., Ye Q., Shi Y. Adsorption of carbon dioxide on organically functionalized SBA-16. Microporous and Mesoporous Material. 2008; 116: 394-9.
Whiting G. T., Meirer F., Mertens M. M., Bons A. J., Weiss B. M., Stevens P. A., Smit E., Weckhuysen B. M. Binder Effects in SiO2-and Al2O3-Bound Zeolite ZSM-5-Based Extrudates as Studied by Microspectroscopy. ChemCatchem. 2015; 7: 1312-21.
Wang T., Jens K.J. Oxidative Degradation of AMP/MEA Blends for Post-combustion CO2 Capture. Energy Procedia. 2013; 37: 306-13.
Yu C. H., Huang C. H., Tan C. S. A Review of CO2 Capture by Absorption and Adsorption. AAQR. 2012; 12: 745-69.
Yang K., John T. F., Robert H. Characterizing Diesel Particulate Filter FailureDuring Commercial Fleet Use due to Pinholes, Melting, Cracking, and Fouling. Emiss. Control Sci. Technol. 2016;2:145–155.
Yang W., Li J., Lan L., Fu Q., Zhang L., Zhu X., Liao Q. Poison tolerance of non-precious catalyst towards oxygen reduction reaction. International Journal of Hydrogen Energy. 2018; 43-17: 8474-79.
Yin G., Liu Q., Liu Z., Wu W. Extension of Kelvin equation to CO2 adsorption in activated carbon. Fuel Processing Technology. 2018; 174: 118-22.
Yue M. B., Sun L. B., Cao Y., Wang Z. J., Wang Y., Yu Q., Zhu J. H. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group. Microporous and Mesoporous Materials. 2008; 114: 74-81.
Zhang M., Zhao X., Zheng S. Enantioselective domino reaction of CO2, amines and allyl chlorides under iridium catalysis: formation of allyl carbamates. Chem. Commun. 2014; 50: 4455-58.
Zheng F., Tran D. N., Busche B. J., Fryxell G. E., Addleman R. S., Zemanian T. S. Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent. Ind. Eng. Chem. Res. 2005; 44: 3099-105.

Zhu Q., Zhang Q., Wen L. Anti-sintering silica-coating Cu Zn Al Zr catalyst for methanol synthesis from CO hydrogenation. Fuel Processing Technology. 2017; 156: 280-9.
Zhao L., Chen Y., Wang B., Sun C., Chakraborty S., Ramasubramanian K., Dutta P. K., Ho W. S. W. Multilayer polymer/zeolite Y composite membrane structure for CO2 capture from flue gas. J. Membrane Science. 2016; 498: 1-13.
Zhao H., Hu J., Wang J., Zhou L., Liu H. CO2 capture by the Amine-modified. Mesoporous Materials. Acta. Phys. Chim. Sin. 2007; 23(6): 801-6.
Zwain H. M., Vakili M., Dahlan I. Waste Material Adsorbents for Zinc Removal from Wastewater: A Comprehensive Review. International J of Chemical Engineering. 2014; 2014: 13.
Zhao Y., Ding H., Zhong Q. Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture. Applied Surface Science. 2013; 284: 138-44.
行政院環保署室內空氣品質資訊網,「認識室內空氣品質的重要性」,2015。
行政院環境保護署,「99-103 年度全國事業廢棄物申報統計表」,2014。
行政院環境保護署,「室內空氣品質自主管理及改善技術手冊」,2010。
行政院環境保護署,「室內空氣品質標準」,2012。
社團法人臺灣室內環境品質學會,「室內空氣品質改善實務推廣計畫」,2014。
健康家國際生物科技股份有限公司,「甲醛對人體的危害」,2014。
郭室均,「四乙烯戊胺改質矽材吸附二氧化碳之研究」,國立中興大學環境工程學系所碩士論文,2009。
郭禮維,「廢觸媒再生製備載體吸附CO2 試驗」,雲林科技大學環境與安全衛生工程系實務專題,2014。
陳建宏,「利用奈米沸石改質技術去除室內空氣污染物二氧化碳之研究」,國立雲林科技大學環境與安全衛生工程系碩士論文,2011。
臺北市政府環境保護局,「改善室內空氣品質−建築物室內裝潢」,2014。
談駿嵩、王志盈,「二氧化碳捕獲」,科學發展,第510 期,2015。
謝祝欽、鄭廣銘,「改質蜂巢狀載體去除室內二氧化碳之研究」,科技學刊,第22 卷,科技類第1 期,第43-56 頁,2013。
鍾佳航,「蜂巢狀堇青石含浸TEPA 吸附CO2 之研究」,國立雲林科技大學環境與安全衛生工程系實務專題,2013。
蘇毅騰,「利用廢石英砂製備中孔洞與微孔材料進行二氧化碳處理之研究」,宜蘭大學環境工程學系學士論文,2014。
黃郁婷,「利用農業廢棄物以微波活化合成微孔活性碳及探討物化性質」,國立台北科技大學環境工程與管理研究所碩士論文,2012。
陳詩叢,「以混合胺溶液吸(MEA+AMP)收二氧化碳之填充式吸收塔設計及成本評估」國立交通大學環境工程研究所碩士論文,2000。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code