Responsive image
博碩士論文 etd-0614105-114342 詳細資訊
Title page for etd-0614105-114342
論文名稱
Title
應用於光通信之混合式有機無機光波導製作
Hybrid Organic-Inorganic Optical Waveguides for Lightwave Communication
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-03
繳交日期
Date of Submission
2005-06-14
關鍵字
Keywords
雙折射、偏振器、抗共振反射光波導、溶凝膠
sol-gel, polarizer, Arrow waveguide, birefringence
統計
Statistics
本論文已被瀏覽 5709 次,被下載 2150
The thesis/dissertation has been browsed 5709 times, has been downloaded 2150 times.
中文摘要
本論文,主要是以抗共振反射波導(Antiresonant reflecting optical waveguide)結構為基礎,來進行混合式有機無機光波導的製作。利用磁子濺鍍(Magnetron sputtering)成長高折射率的五氧化二坦(Ta2O5)薄膜及以電漿輔助化學氣相沉積(Plasma enhanced chemical vapor deposition)沉積低折射率的氮氧化矽(SiON) 薄膜,在導光層與矽基板之間形成共振腔之結構,以確保光波導有較低的光損耗。
我們利用了兩種材料來進行混合式有機無機光波導元件研究。首先,以雙折射高分子材料Polyimide為導光層,製作光波導偏振器(Waveguide polarizer) ,利用此高分子材料雙折射的特性,使不同的光偏振態,有不同的光傳播損耗,而製作出的光波導偏振器,在2公分的光波導長度時,插入損耗為2.2 dB,而消光比可達到40dB以上。
此外,由於抗共振反射光波導的侷限係數(confinement factor)非常接近1,所有的光能量幾乎都在導光層內傳播,所以我們也利用此特性,製作以溶凝膠sol-gel為導光層的抗共振反射光波導,並以邁克生干涉儀進行此溶凝膠之溫度對折射率變化的分析量測,最後得知此溶凝膠在不同的合成條件之下,其溫度對折射率變化大小約為-10-4。
Abstract
Hybrid waveguides based on antiresonant reflecting optical waveguide (ARROW) structure on Si substrates is investigated. The core layer of the waveguide is separated from the Si substrate by interference cladding which consists of a high index first cladding layer and a low index second cladding layer. The Ta2O5 first cladding layer was grown by rf magnetron sputtering system. The SiON second cladding layer was deposited by plasma-enhanced chemical vapor deposition (PECVD) based on the reaction of SiH4/N2O mixtures. Typical propagation losses of the waveguides using this SiON material system are less than 0.15 dB/cm. The high quality cladding layers are prepared to form the Fabry-Perot cavities to ensure low loss operation of the ARROW device at antiresonant conditions.
Two methods were proposed to demonstrate the enormous applications of hybrid ARROW waveguides. First, polyimide/Ta2O5/SiON ARROWs were fabricated to achieve high extinction ratio waveguide polarizers. This is accomplished by tuning the operating point of the TM0 mode from antiresonant condition toward high-order antiresonance of the second cladding layer utilizing birefringence of the waveguide core. The measured extinction ratio and insertion loss of a 2-cm-long ARROW polarizer are 40 dB and 2.2 dB, respectively.
In addition, the temperature dependence of refractive index of organic-inorganic sol-gel glasses was measured by Mach-Zehnder interferometry using the ARROW waveguides. The Sol-gel/Ta2O5/SiO2 ARROWs were fabricated to characterize index-to-temperature coefficients (dn/dT) of the sol-gel glasses because the optical confinement factor of the ARROW is very close to 1. The measured index-to-temperature coefficients of the sol-gel glasses with different compositions are negative and are on the order of 10-4.
目次 Table of Contents
CHAPTER page
I. Introduction 1
1.1 Motivation and advantage of hybrid optical waveguide technology 1
1.1.1 Polymer technology 2
1.1.2 Silica technology 3
1.1.3 Antiresonant reflecting optical waveguide 4
1.2 Dissertation overview 5
1.3 References 6
II. Theoretical design of ARROW-type waveguides 10
2.1 Introduction 10
2.2 Structure of ARROW-type waveguide 12
2.3 Numerical results and discussion 14
2.4 Summary of this chapter 16
2.5 References 21
III. Material growth and Characterization 23
3.1 Introduction 23
3.2 Film deposition and characterization 25
3.2.1 SiON film deposition and characterization 25
3.2.1.1 Waveguide fabrication 26
3.2.1.2 Spectral transmission characteristics 27
3.2.2 Ta2O5 film deposition and characterization 28
3.3 Results and discussion 29
3.4 Summary of this chapter 31
3.5 References 37
IV. ARROW waveguide polarizers 40
4.1 Introduction 40
4.2 Device fabrication 41
4.3 Results and discussion 42
4.4 Summary of this chapter 46
4.5 References 53
V. Temperature dependence of refractive index 55
5.1 Introduction 55
5.2 Materials preparation and characterization 58
5.3 Sol-gel/Ta2O5/SiO2 ARROW waveguide 58
5.4 Temperature dependence of ARROW waveguide 60
5.5 Measurement of index-to-temperature coefficient 61
5.6 Summary of this chapter 64
5.7 References 69
VI. Conclusions 72
參考文獻 References
1. L. Eldada, and L. W. Shacklette, “Advance in polymer integrated optics,” IEEE J. Select. Topics in Quantum Eletron., vol. 6, no. 1, pp. 54-68, 2000.
2. T. Ishigure, Y. Koike, and W. Fleming, “Optimum index profile of the perfluorinated polymer-based GI polymer optical fiber and its dispersion properties,” J. Lightwave Technol., vol. 18, no. 2, 2000.
3. R. Moosburger, R. Hauffe, U. Siebel, D. Arndt, J. Kropp, and K. Petermann, “Passive alignment of Single-mode Fibers to integrated polymer waveguide structures utilizing a single-mask process,” IEEE Photon. Technol. Lett., vol. 11, no. 7, pp. 848-850, 1999.
4. S. M. Garner and S. Caracci, “Variable optical attenuator for large-scale integration,” IEEE Photon. Technol. Lett., vol. 14, no. 11, pp. 1560-1562, 2002.
5. G. Grand, J. P. Jadot, H. Denis, S. Valette, A. Fournier, M. Grouillet, “Low-loss PECVD silica channel waveguides for optical communications,” Electron. Lett., vol. 26, no. 25, pp. 2135-2137, 1990.
6. C. Gorecki, “Optimization of plasma-deposited silicon oxinitride films for optical channel waveguides,” Optics and Lasers in Engin., vol. 33, pp. 15-20, 2000.
7. M. W. Sckerl, S. Guldberg-Kjar, C. Laurent-Lund, and M. Rysholt Poulsen, “Loss-less planar waveguide 1:4 power splitter at 1550 nm,” ECOC’99, I-48, 1999.
8. R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, and Hans Albers, “Silicon Oxynitride planar waveguiding structures for application in optical communication,” IEEE J. Select. Topics in Quantum Eletron., vol. 4, no. 6, pp. 930-937, 1998.
9. C. Laurent-Lund, M. R. Poulsen, M. Beukema, and J. E. Pedersen, “PECVD Grown multiple core planar waveguides with extremely low interface reflections and losses,” IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1431-1433, 1998.
10. M. I. Alayo, I. Pereyra, M. N. P. Carreno, “Thick SiOxNy and SiO2 films obtained by PECVD technique at low temperatures,” Thin Solid Films, vol. 332, pp. 40-45, 1998.
11. M. A. Duguay, Y. Kokubun, and T. L. Koch, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett., vol. 49, no. 1, pp. 13-15, 1986.
12. J. M. Jubica, “Intensity modulation in antiresonant reflecting optical waveguides,” Optics Lett., vol. 20, no. 1, pp. 40-42, 1995.
13. J. M. Kubica, J. Gazecki, and G. K. Reeves, “Multimode operation of ARROW waveguides,” Optics Comm., vol. 102, pp. 217-220, 1993.
14. M. Galarza, K. D. Mesel, S. Verstuyft, D. Fuentes, C. Aramburu, L. A. Manuel, I Moerman, and P. V. Daele, “Mode-expanded 1.55-
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code