Responsive image
博碩士論文 etd-0614105-172724 詳細資訊
Title page for etd-0614105-172724
論文名稱
Title
圖的標示對局與著色對局
Graph marking game and graph colouring game
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-03
繳交日期
Date of Submission
2005-06-14
關鍵字
Keywords
對局著色數、鬆弛對局色數、對局色數
game chromatic number, game coloring number, relaxed game chromatic number
統計
Statistics
本論文已被瀏覽 5756 次,被下載 1912
The thesis/dissertation has been browsed 5756 times, has been downloaded 1912 times.
中文摘要
這篇論文討論圖的標示對局與著色對局。假設G是一個圖。圖G的標示對局是一個二人對局。最初的時候,圖上的頂點都是沒有標示的。甲乙二人輪流在圖上標示尚未標示的頂點。甲先行。當所有的頂點都標示了,對局就結束了。對所有的頂點v,s(v)記為在v著色之前v已經被標示的鄰居的個數。定義s是對局的價值為$s= 1+ max_{v in V}s(v)$。對局的價值為乙的獲利,也是甲的付出。故甲的目標是使對局的價值最小,乙的目標是使對局的價值最大。圖G的對局著色數colg(G),是指最小的s使得甲在圖G上對局時,有一個策略保證對局的價值不超過s。
假設整數r大於等於1,d大於等於零。圖G的(r, d)-鬆弛著色對局,也是一個二人對局。甲乙二人輪流在圖G上的頂點著色。甲先行。顏色是從一共有r個顏色的顏色集X中取出。我們說顏色i對一個還沒著色的頂點x是合法的顏色,是指當點x著了顏色i之後,由所有著i的點所生成的子圖中,任一頂點最多有d個鄰居。甲乙二人均只能用合法的顏色著尚未著色的頂點。甲的目標是讓圖上所有的頂點都著色,而乙的目標則是相反:迫使一個沒著色的頂點沒有合法的顏色可著。圖G的d-鬆弛對局色數記作$chi_g^{(d)}(G)$,是指最少的顏色r使得當甲在圖G的(r, d)-鬆弛著色對局中,有一個贏的策略。當d等於零時,這個值叫做圖G的對局色數,又記作$chi_g(G)$。

這篇論文求出一些種類的圖的對局著色數和鬆弛對局色數的上界和下界。我們證明了局部k樹的最大的對局著色數恰好就等於3k+2。平面圖的最大的對局著色數大於等於11。對於鬆弛對局色數,這篇論文證明了如果$G$是一個外平面圖,則當t= 2, 3, 4且當 d geq t時,$chi_g^{(d)}(G) leq 7-t$。當 $d geq 6$時,$chi_g^{(d)}(G) leq 2$ 。特別地,平面圖的最大4-鬆弛對局色數恰好等於3。如果G 是一個樹,則當 $d geq 2$時,$chi_g^d(G) leq 2$。
Abstract
This thesis discusses graph marking game and graph colouring game.

Suppose G=(V, E) is a graph. A marking game on G is played by two players, Alice and Bob, with Alice playing first. At the start of the game all vertices are unmarked. A play by
either player consists of marking an unmarked vertex. The game ends when all vertices are marked. For each vertex v of G, write t(v)=j if v is marked at the jth step. Let s(v)
denote the number of neighbours u of v for which t(u) < t(v), i.e., u is marked before v. The score of the game is $$s = 1+ max_{v in V} s(v).$$ Alice's goal is to minimize the score, while Bob's goal is to maximize it. The game colouring number colg(G) of G is the least s such that Alice has a strategy that results in a score at most s. Suppose r geq 1, d geq 0 are integers. In an (r, d)-relaxed colouring game of G, two players, Alice and Bob, take turns colouring the vertices of G with colours from a set X of r colours, with Alice having the first move. A colour i is legal for an uncoloured vertex x (at a certain step) if after colouring x with colour i, the subgraph induced by vertices of colour i has maximum degree at most d. Each player can only colour an uncoloured vertex with a legal colour. Alice's goal is to have all the vertices coloured, and Bob's goal is the opposite: to have an uncoloured vertex without legal colour. The d-relaxed game chromatic number of a graph G, denoted by $chi_g^{(d)}(G)$ is the least number r so that when playing the (r, d)-relaxed colouring game on G, Alice has a winning strategy. If d=0, then the parameter is called the game chromatic number of G and is also denoted by $chi_g(G)$. This thesis obtains upper and lower bounds for the game colouring
number and relaxed game chromatic number of various classes of graphs. Let colg(PT_k) and colg(P) denote the maximum game colouring number of partial k trees and the maximum game colouring number of planar graphs, respectively. In this thesis, we prove that colg(PT_k) = 3k+2 and colg(P) geq 11. We also prove that the game colouring number colg(G) of a graph is a monotone parameter, i.e., if H is a subgraph of G, then colg(H) leq colg(G). For relaxed game chromatic number of graphs, this thesis proves that if G is an outerplanar graph, then $chi_g^{(d)}(G) leq 7-t$ for $t= 2, 3, 4$, for $d geq t$, and $chi_g^{(d)}(G) leq 2$ for $d geq 6$. In particular, the maximum $4$-relaxed game chromatic number of outerplanar graphs is equal to $3$. If $G$ is a tree then $chi_ g^{(d)}(G) leq 2$ for $d geq 2$.
目次 Table of Contents
1 Introduction 3
1.1 Some basic notation . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Game chromatic number . . . . . . . . . . . . . . . . . . . . . 6
1.3 Game colouring number . . . . . . . . . . . . . . . . . . . . . 7
1.4 Relaxed game chromatic number . . . . . . . . . . . . . . . . 9
1.5 Game chromatic number of oriented graph . . . . . . . . . . . 10
1.6 Review of results of this thesis and related known results . . . 11
2 Game colouring number of partial k-trees and planar graphs 16
2.1 Partial k-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Relaxed colouring game on forests 24
3.1 Relaxed colouring game on forests with at least 3 colours . . . 24
3.2 Relaxed colouring game on forests with 2 colours . . . . . . . 26
4 Relaxed colouring game on outerplanar graph with at least
3 colours 33
4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Strategy A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 (7, 0)-relaxed colouring game and (6, 1)-relaxed colouring
game on outerplanar graphs . . . . . . . . . . . . . . . . . . . 37
4.4 (5, 2)-relaxed colouring game on outerplanar graphs . . . . . . 38
4.5 (3, 4)-relaxed colouring game and (4, 3)-relaxed colouring game on outerplanar graphs . . . . . . . . . . . . . . . . . . . 40
5 Relaxed colouring game on outerplanar graphs with 2 colours 44
5.1 Strategy B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 (2, 6)-relaxed colouring game on outerplanar graphs . . . . . . 46
5.3 (2, 4)-relaxed colouring game on outerplanar graphs . . . . . . 53
參考文獻 References
[1] H. L. Bodlaender, On the complexity of some coloring games, Computer
Science, 30-40, Springer-Verlag, 1991.
[2] O. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25
(1979), 211-236.
[3] P. Boiron, E. Sopena, L. Vignal, Acyclic improper colorings of graphs,
J. Graph Theory 32 (1999), 97-107.
[4] L. Cai, K. Lih and W. Wang, Game coloring number of planar graphs
without 4-cycles, preprint, 2001.
[5] L. Cai and X. Zhu, The game chromatic index and game coloring index
of graphs, J. Graph Theory 36 (2001), no. 3, 144-155.
[6] C. Chou, W. Wang and X. Zhu, Relaxed game chromatic number of
graphs, Discrete Math 262 (2003), no. 1-3, 89-98.
[7] L. J. Cowen, R. H. Cowen, D. R. Woodall, Defective colorings of graphs
in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory 10 (1986), 187-195.
[8] L. Cowen, W. Goddard, C. E. Jesurum, Defective coloring revisited, J.
Graph Theory 24 (1997), 205-219.
[9] W. Deuber, X. Zhu, Relaxed coloring of a graph, Graphs Combin. 14
(1998), 121-130.
[10] T. Dinski and X. Zhu, An upper bound for the game chromatic of graphs,
Discrete Mathematic, 11 (1998), 590-602.
[11] C. Dunn and H. A. Kierstead, The relaxed game chromatic number of
outerplanar graphs, J. Graph Theory 46 (2004), 69-78.
[12] C. Dunn and H. A. Kierstead, A simple competitive coloring algorithm
(II), J. Combin. Th. (B) 90 (2004), 93-106.
[13] C. Dunn and H. A. Kierstead, A simple competitive coloring algorithm
(III), J. Combin. Th. (B) 92 (2004), 137-150.
[14] T. Dinski and X. Zhu, A bound for the game chromatic number of graphs,
Discrete Mathematics 196(1999), 109-115.
[15] W. He, X. Hou, K. Lih, J. Shao, W. Wang and X. Zhu, Edge-partitions
of planar graphs and their game coloring numbers, Journal of Graph
Theory, 41 (2002), 307-317.
[16] W. He, J. Wu and X. Zhu, Relaxed game chromatic number of trees and
outerplanar graphs, Discrete Mathematics, 281 (2004), 209-219.
[17] U. Faigle, U. Kern , H. A. Kierstead and W. T. Trotter, On the game
chromatic number of some classes of graphs, Ars Combin. 35 (1993),
143-150.
[18] M. Frick, A survey of (m, k)-colorings, Ann. Discrete Math. 55 (1993),
45-58.
[19] D. Guan and X. Zhu, The game chromatic number of outerplanar graphs,
J. Graph Theory 30 (1999), 67-70.
[20] H. A. Kierstead, A simple competitive graph coloring algorithm, J. Com-
binatorial Theory (B) 78 (2000), 57-68.
[21] H. A. Kierstead and Zs. Tuza, Marking games and the oriented game
chromatic number of partial k-trees, Graphs and Combinatorics, 19
(2003), 121-129.
[22] H. A. Kierstead and D. Yang, Very assymetric marking games,
manuscript, 2002.
[23] H. A. Kierstead and W. T. Trotter, Planar graph coloring with an un-
cooperative partner, J. Graph Theory 18 (1994), no. 6, 569-584.
[24] H. A. Kierstead and W. T. Trotter, Competitive colorings of oriented
graphs, Electron. J. Combin. 8 (2001), no. 2, Research Paper 12, 15 pp.
(electronic).
[25] J. Ne·set·ril and E. Sopena, On the oriented game chromatic number,
Electron. J. Combin. 8 (2001), no. 2, Research Paper 14, 13 pp. (elec-
tronic).
[26] R. U. Skrekovski, List improper colorings of planar graph, Combin.
Probab. Comput. 8 (1999), 293-299.
[27] D. R. Woodall, Improper colorings of graphs, in: R. Nelson, R.J. Wilson
(Eds.), Graph Colorings, Longman Scienti5c and Technical, New York,
1999, pp. 45-63.
[28] J. Wu and X. Zhu, Relaxed game chromatic number of outer planar
graphs, Ars Combinatoria, to appear.
[29] J. Wu and X. Zhu, Relaxed game colouring of outer planar graphs, sub-
mitted.
[30] J. Wu and X. Zhu, Lower bounds for the game colouring number of
partial k-trees and planar graphs, submitted.
[31] X. Zhu, The game coloring number of planar graphs, J. Combinatorial
Theory (B) 75 (1999), 245-258.
[32] X. Zhu, Game coloring number of pseudo partial k-trees, Discrete Math-
ematics 215 (2000), 245-262.
[33] X. Zhu, Re‾ned activation strategy for the marking game, submitted.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code