Responsive image
博碩士論文 etd-0614114-133104 詳細資訊
Title page for etd-0614114-133104
論文名稱
Title
具軌對軌輸入和輸出範圍之高壓運算放大器與8:1 類比高壓多工器
A High Voltage Operational Amplifier with Rail-to-rail Input and Output Ranges and an 8:1 Analog High Voltage Multiplexer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-26
繳交日期
Date of Submission
2014-07-14
關鍵字
Keywords
電池管理系統、高壓開關、類比高壓多工器、軌對軌輸入輸出範圍、高壓運算放大器
high-voltage amplifier, high-voltage switch, high-voltage analog multiplexer, battery management system, rail-to-rail input and output ranges
統計
Statistics
本論文已被瀏覽 5699 次,被下載 0
The thesis/dissertation has been browsed 5699 times, has been downloaded 0 times.
中文摘要
電池管理系統是電動車之關鍵技術,其中包括電池模組技術開發、電池參數
量測電路等相關文獻與研究,本論文提出針對電池電壓量測電路所需之具軌對軌
輸出輸入範圍之高壓運算放大器與類比高壓多工器。
前述技術所需之放大器,在本論文中提出一具軌對軌輸入輸出範圍之高壓運
算放大器,可應用於電池管理系統之訊號轉換電路設計,如減法器、類比-數位
轉換器。本論文所提出為三級放大器,其中包括P 型與N 型輸入級、電壓限制級
以及輸出級,可達到高輸入輸出範圍。實測結果顯示輸入範圍可達30 V,輸出範
圍為0 ∼ 29.57 V,直流增益(Gain) 可達到41 dB,且不須設計一輸入範圍極高的
ADC,即可應用於電池管理中做精確的SOC 估算。
另一關鍵技術為高壓多工器,本論文提出一8:1 類比高壓多工器,可應用於
電池管理系統偵測電壓電路設計。本論文所偵測之鋰電池模組由八個串接的鋰電
池單元組成,且鋰電池單元電壓範圍為2.5 V 至4.5 V,故其最高電壓為36 V。為
了解決輸入的高電壓範圍,本設計實現一8:1 類比高壓多工器,其輸入電壓範圍
可達0 ∼ 36 V,系統電壓為5 V,且輸出電壓範圍為1.5 ∼ 3.5 V,符合後端SAR
ADC 的輸入電壓範圍。
Abstract
One of the key techniques of electric vehicles (EVs) is battery management systems,
which demand the development of battery modules, the measurement circuits of batteries,
and so on. This thesis investigates a high-voltage operational amplifier with rail-to-rail
input and output ranges, and an 8:1 analog high-voltage multiplexer for the battery voltage
measurement.
This thesis proposes a high-voltage operational amplifier with rail-to-rail input and
output ranges to meet the required amplifier for the aforementioned technology. It also
carries out the signal transfer circuit design for battery management systems, such as subtractor,
analog to digital converter. Since the input range of the design could be up to 30
V, and the output range is 0 ∼ 29.57 V, ADC with a high input range is no longer needed
hereby. Although the dc gain is 41 dB, the gain error can be corrected by using low-bit
ADCs. Finally, this design is expected for battery management systems to attain accurate
SOC estimation .
Another key circuit is the high-voltage multiplexer. This thesis proposes a 8:1 highvoltage
analog multiplexer which can be used to measure the voltage of a single cell in
a battery string. If the battery modules consists of eight batteries connected in series and
the voltage of a battery cell is 2.5 V to 4.5 V, the input voltage range is 0 ∼ 36 V. To
resolve the high input voltage problem, this thesis demonstrates a 8:1 high-voltage analog
multiplexer, where the output voltage range is in line with SAR ADC input voltage range
of 1.5 ∼ 3.5 V.
目次 Table of Contents
論文口試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
論文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X
1 概論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 相關文獻與研究探討. . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 具軌對軌輸入輸出範圍之高壓運算放大器. . . . . . . . . . . 4
1.2.2 類比高壓多工器. . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 論文大綱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 具軌對軌輸入輸出範圍之高壓運算放大器. . . . . . . . . . . . . . . . . . . 12
2.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 具軌對軌輸入輸出範圍之高壓運算放大器整體架構. . . . . . . . . . 15
2.3 具軌對軌輸入輸出範圍之高壓運算放大器電路設計. . . . . . . . . . 16
2.3.1 P 型輸入級. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 N 型輸入級. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 高電壓範圍限制器. . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 低電壓範圍限制器. . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.5 輸出級. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 電路模擬與預計規格. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 電壓限制級模擬與分析. . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 整體電路模擬與分析. . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 預計規格與效能比較. . . . . . . . . . . . . . . . . . . . . . . 25
2.5 晶片佈局. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 晶片實作與量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.1 晶片量測結果與分析. . . . . . . . . . . . . . . . . . . . . . . 30
2.6.2 預計規格與實測結果. . . . . . . . . . . . . . . . . . . . . . . 31
2.7 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 8:1 類比高壓多工器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 8:1 類比高壓多工器架構. . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 8:1 類比高壓多工器電路設計. . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 解碼器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 高壓隔離開關. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 高壓開關. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 具開關控制之運算放大器. . . . . . . . . . . . . . . . . . . . 42
3.3.5 低壓多工器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.6 電壓乘法器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4 電路模擬與預計規格. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 高壓開關與高隔離度高壓開關模擬與分析. . . . . . . . . . . 45
3.4.2 全電路模擬與分析. . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.3 預計規格與效能比較. . . . . . . . . . . . . . . . . . . . . . . 51
3.5 晶片佈局. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 晶片實作與量測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.1 晶片量測結果與分析. . . . . . . . . . . . . . . . . . . . . . . 54
3.6.2 預計規格與實測結果. . . . . . . . . . . . . . . . . . . . . . . 56
3.7 結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4 結論與未來工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
參考文獻 References
[1] K. Rajashekara, “Present status and future trends in electric vehicle propulsion technologies,”
IEEE J. of Emerging and Selected Topics in Power Electronics, vol. 1, no.
1, pp. 3–10, Mar. 2013.
[2] L. Situ, “Electric vehicle development: The past, present & future,” in Proc. 3rd
International Conference on Power Electronics Systems and Applications, pp. 1–3,
May 2009.
[3] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery
choice and management for new-generation electric vehicles,” IEEE Trans. Industrial
Electronics, vol. 52, no. 5, pp. 1343–1349, Oct. 2005.
[4] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles,”
IEEE Proceedings, vol. 95, no. 4, pp. 806–820, Apr. 2007.
[5] J. Garche and A. Jossen, “Battery management systems (BMS) for increasing battery
life time,” in Proc. The Third International Telecommunications Energy Special
Conference, pp. 81–88, May 2000.
[6] T. Gage, “Lead-acid batteries: key to electric vehicle commercialization. experience
with design, manufacture, and use of EVs,” in Proc. The Fifteenth Annual Battery
Conference on Applications and Advances, pp. 217–222, Jan. 2000.
[7] B. Pattipati, C. Sankavaram, and K. Pattipati, “System identification and estimation
framework for pivotal automotive battery management system characteristics,”
IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
vol. 41, no. 6, pp. 869–884, Nov. 2011.
[8] L.-Y. Wang, M. P. Polis, G. Yin, W. Chen, Y. Fu, and C. Mi, “Battery cell identification
and SOC estimation using string terminal voltage measurements,” IEEE Trans.
Vehicular Technology, vol. 61, no. 7, pp. 2925–2935, Sep. 2012.
61
[9] B. L. Alvarez, S. V. Garcia, and C. F. Ramis, “Developing an active balancing model
and its battery management system platform for lithium ion batteries,” in Proc. 2013
IEEE International Symposium on Industrial Electronics, pp. 1–5, May 2013.
[10] Y. Hu, “A receiver with over-voltage protection for FlexRay systems and an 8:1
high-voltage analog multiplexer for battery management system,” Master’s thesis,
National Sun Yat-sen University, Jul. 2013.
[11] D. Andrea, Battery Management Systems for Large Lithium-Lon Battery Packs. MA:
Artech House, 2010.
[12] A. Manenti, A. Abba, A. Merati, S. Savaresi, and A. Geraci, “A new BMS architecture
based on cell redundancy,” IEEE Trans. Industrial Electronics, vol. 58, no. 9,
pp. 4314–4322, Sep. 2011.
[13] J. Duque-Carrillo, J. Ausiín, G. Torelli, J. Valverde, and M. Deminguez, “1-V railto-
rail operational amplifiers in standard CMOS technology,” IEEE J. of Solid-State
Circuits, vol. 35, no. 1, pp. 33–44, Jan. 2000.
[14] M. R. Valero, S. Celma, N. Medrano, and B. Calvo, “A 4- W 0.8-V rail-to-rail input/
output CMOS fully differential opamp,” in Proc. 2011 7th Conference on Ph.D.
Research in Microelectronics and Electronics, pp. 137–140, Jul. 2011.
[15] M. Lemkin, “A 200-V high-voltage amplifier using a parasitic field-oxide transistor
for voltage feedback,” IEEE J. of Solid-State Circuits, vol. 38, no. 10, pp. 1730–
1734, Oct. 2003.
[16] D. Bianchi, F. Quaglia, A. Mazzanti, and F. Svelto, “A 90Vpp 720MHz GBW linear
power amplifier for ultrasound imaging transmitters in BCD6-SOI,” in Proc.
2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers,
pp. 370–372, Feb. 2012.
[17] M. Snoeij and M. Ivanov, “A 36V JFET-input bipolar operational amplifier with
1 V/ ◦C maximum offset drift and -126dB total harmonic distortion,” in Proc.
62
2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers,
pp. 248–250, Feb. 2011.
[18] S.-H. Yang and C.-C. Wang, “Domestic indirect feedback compensation of multiplestage
amplifiers for multiple-voltage level-converting amplification,” in Proc. 2011
IEEE International Conference on IC Design Technology, pp. 1–4, May 2011.
[19] J. Borg and J. Johansson, “An ultrasonic transducer interface IC with integrated pushpull
40 Vpp, 400 mA current output, 8-bit DAC and integrated HV multiplexer,”
IEEE J. of Solid-State Circuits, vol. 46, no. 2, pp. 475–484, Feb. 2011.
[20] D. Adams, H. Barnes, M. Fitzpatrick, N. Goldstein, W. Hand, W. Jackson, R. Koga,
M. Pennock, H. Remenapp, and J. Smith, “A radiation hardened high voltage 16:1
analog multiplexer for space applications (NGCP3580),” in Proc. 2008 IEEE Radiation
Effects Data Workshop, pp. 82–84, Jul. 2008.
[21] K. Hara, J. Sakano, M. Mori, S. Tamano, R. Sinomura, and K. Yamazaki, “A new
80V 32x32ch low loss multiplexer LSI for a 3d ultrasound imaging system,” in
Proc. The 17th International Symposium on Power Semiconductor Devices and ICs,
pp. 359–362, May 2005.
[22] R. Williams, L. Sevilla, E. Ruetz, and J. D. Plummer, “A DI/JI-compatible monolithic
high-voltage multiplexer,” IEEE Trans. Electron Devices, vol. 33, no. 12,
pp. 1977–1984, Dec. 1986.
[23] C.-L. Chen, D.-S. Wang, J.-J. Li, and C.-C. Wang, “A battery interconnect module
with high voltage transceiver using 0.25 m 60V BCD process for battery management
systems,” in Proc. 2012 International SoC Design Conference, pp. 1–4, Nov.
2012.
[24] C.-L. Chen, Y. Hu, W. Luo, C.-C. Wang, and C.-Y. Juan, “A high voltage analog
multiplexer with digital calibration for battery management systems,” in Proc. 2012
IEEE International Conference on IC Design Technology, pp. 1–4, May 2012.
63
[25] C.-L. Chen, Y.-L. Wu, C.-Y. Juan, and C.-C. Wang, “High voltage operational amplifier
and high voltage transceiver using 0.25 m 60V BCD process for battery
management systems,” in Proc. 2013 International Conference on IC Design Technology,
pp. 97–100, May 2013.
[26] R. Hogervorst, J. P. Tero, R. G. H. Eschauzier, and J. Huijsing, “A compact powerefficient
3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries,”
IEEE J. of Solid-State Circuits, vol. 29, no. 12, pp. 1505–1513, Dec. 1994.
[27] D.-S. Wang, “A high-voltage multiplexer and a successive-approximation register
analog to digital converter for BMS,” Master’s thesis, National Sun Yat-sen University,
Jul. 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.224.0.25
論文開放下載的時間是 校外不公開

Your IP address is 18.224.0.25
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code