Responsive image
博碩士論文 etd-0614114-154921 詳細資訊
Title page for etd-0614114-154921
論文名稱
Title
於配電系統中考量照度不確定性之太陽光電滲透率分析
Photovoltaic Penetration Analysis for Distribution Systems Considering Solar Irradiance Uncertainty
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-26
繳交日期
Date of Submission
2014-07-16
關鍵字
Keywords
滲透率、太陽光伏發電系統、太陽能照度、OpenDSS、MATLAB、機率負載潮流、蒙地卡羅
MATLAB, Penetration Level, Probabilistic Power Flow, Monte Carlo, Solar Irradiance, OpenDSS, Solar Photovoltaic
統計
Statistics
本論文已被瀏覽 5748 次,被下載 1383
The thesis/dissertation has been browsed 5748 times, has been downloaded 1383 times.
中文摘要
因為綠能日益普及,未來配電系統中將併聯許多太陽光伏發電系統此時可能導致電壓超過併聯法規的限制。本論文研究不同程度之太陽光伏發電系統滲透率與太陽能照度的不確定時,對配電電壓的影響。論文中考量不同太陽光伏發電系統的裝置容量,來決定系統滲透率,繼而利用蒙地卡羅(Monte Carlo) 及機率負載潮流(Probabilistic Power Flow),並結合MATLAB以及OpenDSS軟體平台來分析太陽能照度與負載變化對配電電壓的影響
Abstract
As the popularity of green energy gains momentum, the increase in solar photovoltaic (PV) system power injected into distributed networks is bound to result in voltage standard violation. A study on photovoltaic penetration considering solar irradiance uncertainty is conducted in this thesis to ensure that power quality is within regulatory bounds. The PV unit size with considerable capacity compared with the network size, which consequently affects the penetration level of the solar photovoltaic distributed generation (PVDG), is examined using Monte Carlo to solve a probabilistic power flow (PPF). The PPF accounts for the random nature of solar irradiance and load shape. Therefore, to capture how this randomness affects voltage variation, the PPF is performed at very small time intervals (3.6 seconds) in a quasi-steady state environment. The different penetration levels are statistically compared in order to identify the ideal PV unit size for a test distribution network. This thesis describes the models used for the study, discusses the impacts of PVDG of different penetration level and presents the results of simulations conducted using both MATLAB and OpenDSS software platforms.
目次 Table of Contents
ACKNOWLEDGEMENTS……………………………………………………........iii
摘要………………………………………………………………………..…...........iv
ABSTRACT……………………………………………………………...........….....v
TABLE OF CONTENTS………………………………………………….………....vi
LIST OF FIGURES………………………………………………………….…...... viii
LIST OF TABLES……………………………………………………………..….... x
ACROYNMS AND ABBREVIATIONS………………………………………….....xi

CHAPTER 1 INTRODUCTION…………………………………....………….........1
1.1 Study Objective……………………….….………………….....…..…......…3
1.2 Thesis Outline…………………………….…….……...……………............4

CHAPTER 2 SOLAR PHOTOVOLTAIC DISTRIBUTED GENERATION….……..5
2.1 Solar Photovoltaic Energy…………………………………………...…....…..5
2.2 The Photovoltaic Panel………………………………………………….....….5
2.3 Integrating Solar Photovoltaic to Grid……………………….………........….7
2.4 The Photovoltaic Inverter…………………………………………....….........10
2.4.1 The Maximum Power Point…………………..…................................….10
2.4.2 The Maximum Power Point Tracker……………………...….....................12
2.5 Direct Solar Radiation…………………………………….…………..…........13
2.6 Ambient Temperature……………………………………………………........14

CHAPTER 3 MODELING SOFTWARE & PROBABILISTIC POWER FLOW….15
3.1 Introduction to OpenDSS………………….……………………...…...…......15
3.2 Modeling of Photovoltaic Generator…………………………………….........16
3.3 Solar Panel Model………………………………………….………...............17
3.4 MATLAB………………………………………………………………..............18
3.5 Linking OpenDSS with MATLAB………………………………………..........19
3.6 Probabilistic Power Flow………………………………………………...........20
3.7 Random PV Generation Model…………………………………………............22
3.8 Probabilistic Load Model…………………………………………….............….23
3.9 Statistical Analysis…………………………………………….........................25

CHAPTER 4 TEST RESULTS AND DISCUSSION………………...……………...26
4.1 The Test Distribution System…………..………..…………………...…..........26
4.2 Simulation with PVDG Interconnection……………………………….............28
4.3 Case one: 5% Penetration Level…………............……………………….......32
4.4 Case two: 10% Penetration Level………………………………………...........38
4.5 Case three: 15% Penetration Level……………………………………............44
4.6 Case Four: 20% Penetration Level……………………………………….......50
CHAPTER 5 CONCLUSION & FUTURE RESEARCH…...………………….……56
5.1 Conclusion……………………………………………………………..…..56
5.2 Future Research………………………………………………………...…57
REFERENCES…………………………………………………….………………..…58
APPENDIX A - Test Distribution System Parameters……..….…….……..…..….61
APPENDIX B - Test Feeder circuit OpenDSS code…..………...….……..….......64
APPENDIX C - Probabilistic Power Flow using Monte Carlo MATLAB code…....68
APPENDIX D - Probabilistic Load Model - MATLAB code…......……….….……..69
APPENDIX E - Solar PVDG output at hour 10 to 11- MATLAB code……..…..….70
APPENDIX F - Statistical Analysis - MATLAB code……………...……….……....71
APPENDIX G - Number of Solar Panels……………………………………….........73
APPENDIX H - Penetration Level Calculation………………………………….....…74
參考文獻 References
[1] Y. Liu, J. Bebic, B. Kroposki et al., “Distribution System Voltage performance Analysis for High-Penetration PV,” IEEE Energy 2030 Conference, pp.1-8, 2008.

[2] R. E. P. N. for the 21st Century, “Renewables 2013 global status report,” tech. rep., Renewable Energy Policy Network for the 21st Century, 2013.

[3] C.H. Lin, W.L. Hsien, C. S. Chen et al., “Optimization of Photovoltaic penetration in Distribution System Considering Annual Duration curve of solar irradiation,” IEEE Transactions on Power Systems, Vol. 27, Issue: 2 pp.1090-1097, 2012.

[4] Swaziland Electricity Company Annual Report 2012/13,
Available: http://www.sec.co.sz/documents/annualreports/20122013.pdf

[5] B. Gudimetla, F. Katiraei, J.R. Aguero et al., “Integration of Micro-Scale Photovoltaic Distributed Generation (PV-DG) on Power Distribution Systems: Dynamic Analysis,” IEEE PES Transmission and Distribution Conference and Exposition, pp. 1-7, 2012.

[6] H. Alastrash, A. Mensah, E. Mark et al., “Generator Emulation Controls for Photovoltaic Inverters,” IEEE International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), pp. 2043-2050, 2011.

[7] H. Haberlin, “Photovoltaics: System Design and Practice,” John Wiley & Sons, West Sussex, United Kingdom, 2012.

[8] L. L. Grigsby, “The Electric Power System Engineering Handbook 3rd Edition,” Florida U.S.A, Taylor & Francis Group, 2012.

[9] Photoelectric effect encyclopedia article,
Available: http://www.wikipedia.org/wiki/Photoelectric_effect

[10] M.G. Villalva, J.R. Gazoli, E.R. Filho, “Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays,” IEEE Transaction on Power Electronics, Vol. 24, Issue: 5, pp.1198-1208, 2009.

[11] Samlex Solar Learning Center, Samlex America, 2014
Available: http://www.samlexsolar.com/learning-center/solar-cell-module-array.aspx

[12] S.J. Lewis., “Analysis and management of the impacts of a high penetration of photovoltaic systems in an electricity distribution network,” IEEE PES Innovative Smart Grid Technologies Asia (ISGT), pp. 1-7, 2011.

[13] IEEE Application Guide for IEEE Std 1547(TM), IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, 1547.2-2008.

[14] T. Chen, W. Yang, Y. Cai et al., “Voltage Variation Analysis of Normally Closed-Loop Distribution Feeders Interconnected with Distributed Generation,” Available: http://cdn.intechopen.com/pdfs-wm/10146.pdf.

[15] A.G. Marinopoulos, A. S. Bouhouras, G. K. Peltekis et al., “PV penetration Allocation to an urban distribution network: A power loss reduction approach,” IEEE Bucharest Power Tech Conference, Romania, pp. 1 - 6, 2009.

[16] Photovoltaic Education Network
Available:http://pveducation.org/pvcdrom/properties-of-sunlight/solar-radiation-at-earths-surface.

[17] J. H. Teng, S. W. Luan, D. J. Lee et al., “Optimal Charging-Discharging Scheduling of Battery Storage Systems for Distribution Systems Interconnected With Sizeable PV Generation Systems“, IEEE Transactions on Power Systems, vol. 28, Issue: 2, 2013.

[18] J. M. Sexauer, S. Mohagheghi, “Voltage Quality Assessment in a Distribution System with Distributed Generation – A Probabilistic Load Flow Approach,” IEEE Transactions on Power Delivery, Vol. 28, Issue: 3, pp. 1652 – 1662, 2013.

[19] R. C. Dugan, T. E. McDermott, “An Open Source Platform for Collaborating on Smart Grid Research,” IEEE Power and Energy Society General Meeting, pp. 1-7, 2011.

[20] R. C. Dugan “Reference Guide of the Open Distribution System Simulator (OpenDSS),” Available: OpenDSS Tutorial Documents.

[21] DelSolar D6p multi-crystalline Photovoltaic Cell parameters
Avaliable:http://www.delsolarpv.com/download/products/cell/QWMD-03-03-01-D6P-Ver.1.4-EN.pdf.

[22] MATLAB Product Description, 2014.
Available: http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf

[23] R. Zhouyang, Y. Wei, Z. Xia et al., “ Probabilistic Power Flow Studies Incorporating correlations of PV generation of Distribution Networks,” JEET, Vol. 9, 2014.

[24] S. Raychaudhuri, “Introduction to Monte Carlo Simulation,” Simulation Conference, WSC, pp. 91-100, 2008.

[25] S. Conti, S. Raiti, “Probability load flow using Monte Carlo techniques for distribution networks with photovoltaic generators,” International Conference on Clean Electrical Power(ICCEP), pp. 132 – 136, 2007.

[26] F.J. Ruiz-Rodriguez, J.C. Hernandez, F. Jurado, “Probabilistic Load Flow for radial distribution networks with photovoltaic generators,” IET Renewable Power Generation, Vol. 6, Issue: 2, pp. 110-121, 2012.

[27] J. Aramizu & J. C. M. Vieira, “Analysis of PV Generation Impacts on Voltage Imbalance and on Voltage Regulation in Distribution Networks,” IEEE Power and Energy Society General Meeting (PES), pp.1-5, 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code