Responsive image
博碩士論文 etd-0614114-213623 詳細資訊
Title page for etd-0614114-213623
論文名稱
Title
(1)分子信籤應用於螢光感測酵素活性與其抑制; (2)開發新的合成方法製備金奈米簇
(1) Molecular beacon for fluorescent assay of enzyme activity and its inhibition; (2) A new strategy for preparing gold nanoclusters
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-10
繳交日期
Date of Submission
2014-07-15
關鍵字
Keywords
榖胱甘肽、金奈米簇、腺苷、S-腺苷-L-高半胱胺酸水解酶、分子信籤、螢光
fluorescence, glutathione, S-adenosylhomocysteine hydrolase, gold nanocluster, adenosine, Molecular beacon
統計
Statistics
本論文已被瀏覽 5823 次,被下載 0
The thesis/dissertation has been browsed 5823 times, has been downloaded 0 times.
中文摘要
本篇研究分為兩部份:設計分子信籤 (Molecular beacon),分別在5'和3'以共價鍵結修飾螢光團和消光團,當加入分析物後可誘導分子信籤構型改變,產生螢光訊號的差異,藉此應用於偵測酵素及其抑制;開發新的合成方法合成金奈米簇,利用其具有的特殊光學性質與化學性質,應用於偵測胺基酸硫醇、葡萄糖及催化反應。
(一) 分子信籤應用於螢光感測酵素活性與其抑制:
S-腺苷-L-高半胱胺酸水解酶 (SAHH),此酵素活性可調控胺基硫醇類代謝物的含量,在細胞中扮演重要的角色,且與免疫不全疾病及遺傳性甲硫胺酸代謝障礙有密切關係。另外,當SAHH活性被抑制時,細胞內SAH濃度升高,間接干擾生物體內酯類、蛋白質、核酸的甲基化進行,影響細胞之代謝。依此原理設計有效抑制SAHH酵素活性之藥物可用於寄生蟲疾病的藥物使用。因此,本篇研究設計一分子信籤,Loop端含有15個鹼基,Stem端含有8個胸腺嘧啶 (Thymine, T)鹼基,並於5'和3'端分別修飾上螢光團 (HEX)和消光團 (DABCYL),透過Non-Watson-Crick配對方式,形成金屬-鹼基鍵 (T-Hg2+-T),使分子信籤形成髮夾彎 (Hairpin)結構,造成螢光團與消光團互相接近產生碰撞消光,而螢光下降,此時為T8-MB.Hg2+ probe。當含有胺基硫醇分子時,因Hg2+-S間具有強共價作用,能將分子信籤內的Hg2+置換出來,使分子信籤的髮夾彎結構改變,形成任意捲曲狀 (random coil)造成螢光恢復,利用螢光回復來針對高半胱胺酸及酵素定量,線性範圍分別為10~100 nM及12.5~125 units/mL,偵測極限為3 nM及4 units/mL (0.24 nM);當腺苷類似物存在時,可有效地抑制SAHH活性,降低或停止催化SAH水解反應,致使分子信籤探針的構形不改變而無螢光信號回復的現象。此設計也成功應用於偵測乙醯膽鹼酯酶水解硫代乙醯膽鹼的反應。

(二) 開發新的合成方法合成金奈米簇:
近年來發展出許多合成奈米簇的方法,主要可分為兩大類:下到上 (botton-up)及上到下 (top-down)的合成路徑。在本篇研究中提出一個新的合成方法來獲得金奈米簇,並於中性條件下利用蛋白質做為模板及具有size-focusing的特性,將外界水相隔絕,減少非螢光途徑的能量緩解,降低螢光淬熄的機會,合成出一系列不同放射波長的螢光金奈米簇。利用金奈米簇的特殊光學性質與化學性質,開發出功能性金奈米簇配合分析上的各種應用。由於結構的特性,Au5及Au8金奈米簇會受到胺基酸硫醇的core-etching造成螢光淬熄,利用此現象來偵測榖胱甘肽,並進行定量分析;過氧化氫具有強氧化性,當其與金奈米簇反應,會造成奈米簇表面特性改變造成螢光淬熄,我們利用葡萄糖氧化酶作為模版,合成出綠色螢光金奈米簇,藉由催化葡萄糖生成過氧化氫,對葡萄糖進行定量分析。最後利用金奈米簇催化對-硝基苯酚生成對-安基苯酚,此結果說明金奈米簇具有催化能力。
Abstract
The thesis consists of two parts. In the first part, we present that a thymine (T)-based molecular beacon (MB) is used for probing S-adenosylhomocysteine hydrolase (SAHH)-catalyzed hydrolysis of S- adenosylhomocysteine (SAH), and for following the inhibition of SAHH. The designed MB (T8-MB-T8) contains a 15-mer loop and a stem consisting of a pair of 8-mer T bases, a fluorophore unit at the 5'-end, and a quencher unit at the 3'-end. When Hg2+ induced T-T mismatches to form stable T-Hg2+-T coordination in the MB stem, a change in the conformation of T8-MB-T8 places fluorophore and quencher in proximity to each other and causes in the collisional quenching of fluorescence between them. SAHH catalyzed the hydrolysis of SAH to produce homocysteine. The generated homocysteine enables Hg2+ to remove from a hairpin-shaped T8-MB-T8 through the formation of strong Hg2+-S bond, leading to the restoration of its fluorescence. The T8-MB-T8.Hg2+ probe showed a limit of detection for SAHH of 4 units L-1 (~0.24 nM) and is reusable for detecting the SAHH/SAH system. Because adenosine is effective to inhibit SAHH activity, the T8-MB-T8.Hg2+ probe combined the SAHH/SAH system was used for sensitive and selective detection of adenosine in urine and serum without the interferences of other adenosine analogues.
In the second part, we developed a new strategy for the production of gold nanoclusters based on the fact that fenton reaction is capable of inducing etching of gold nanoparticles. This top down-based synthesis of gold nanoclusters follows two steps: (1) in the presence of glutathione, reduction of the Au3+ precursor solution with NaBH4 resulted in the formation of gold nanoparticles and (2) the formed gold nanoparticles was etched to gold nanoclusters via Fenton reaction. To obtain atomically precise gold nanoclusters and enhanced their quantum yields, different types of proteins were used for size focusing of the formed gold nanoclusters. The maximal emission of trypsin-, bovine serum albumin-, lysozyme type VI-, and glucose oxidase-stabilized gold nanoclusters appears at 415, 463, 460, and 535 nm, suggesting the presence of Au5, Au8, Au8, and Au13 clusters, respectively. (Matrix-assisted laser desorption/ionization)-(time-of-flight) mass spectrometry and slab-gel native electrophoresis were utilized to demonstrate the formation of gold nanoclusters. Because glutathione can efficiently etch trypsin-stabilized Au5, bovine serum albumin-stabilized Au8, and lysozyme type VI-stabilized Au8, these clusters were well suited to probe glutathione. Glucose oxidase-functionalized Au13 clusters were utilized to detect glucose via the combination of glucose-glucose oxidase catalyzed reaction and H2O2-induced quenching of gold nanoclusters. In addition to the application of gold nanoclusters as optical sensors, we disclose that gold nanoclusters as catalysis for conversion of 4-nitrophenol to 4-aminophenol were more efficient than glutathione- and citrate-capped gold nanoparticles.
目次 Table of Contents
論文審定書................................................................................................................................I
摘要...........................................................................................................................................II
ABSTRACT............................................................................................................................IV
目錄........................................................................................................................................VII
圖次...........................................................................................................................................X
表次........................................................................................................................................XII
縮寫表..................................................................................................................................XIII
第一章、分子信籤應用於螢光感測酵素活性與其抑制..........................................................1
1、前言..............................................................................................................................1
2、實驗部份......................................................................................................................4
2.1 實驗藥品..........................................................................................................4
2.2 實驗裝置..........................................................................................................7
2.3 樣品配置方法..................................................................................................8
2.4 實驗過程..........................................................................................................9
3、結果與討論................................................................................................................10
3.1 感測機制的建立............................................................................................10
3.2 探討最佳化HgCl2濃度和反應時間.............................................................11
3.3 探討鹽類濃度對分子信籤的影響................................................................14
3.4 探討pH值對分子信籤的影響......................................................................16
3.5 分子信籤應用於偵測高半胱胺酸及反應時間的探討................................17
3.6 高半胱胺酸的定量分析................................................................................17
3.7 利用T8-MB-T8.Hg2+分子信籤偵測酵素水解產物.....................................23
3.8 利用T8-MB-T8.Hg2+分子信籤進行酵素活性試驗.....................................26
3.9 分子信籤探針於SAH/SAHH系統中重複性的探討...................................31
3.10 針對SAHH之抑制反應及抑制劑效率探討..............................................32
3.11 人類尿液及血漿樣品中腺苷的定量分析..................................................34
4、結論............................................................................................................................37
第二章、開發新的合成方法製備金奈米簇............................................................................38
1、前言............................................................................................................................38
1.1 金屬奈米簇....................................................................................................38
1.2 金屬奈米簇的合成方法................................................................................38
1.3 金屬奈米簇的應用........................................................................................42
1.4.1 偵測金屬離子....................................................................................42
1.4.2 偵測過氧化氫....................................................................................43
1.4.3 偵測胺基酸硫醇分子........................................................................44
1.4.4 金屬奈米簇應用於生物影像............................................................44
1.4 研究動機........................................................................................................46
2、實驗部份....................................................................................................................47
2.1 實驗藥品........................................................................................................47
2.2 儀器設備........................................................................................................49
2.3 實驗過程與樣品配置方法............................................................................52
3、結果與討論...................................................................................................................55
3.1 金奈米粒子之材料鑑定................................................................................55
3.2 反應機構探討................................................................................................62
3.3 蛋白質修飾金奈米簇的合成........................................................................64
3.4 蛋白質修飾金奈米簇之光學特性................................................................75
3.5 蛋白質修飾金奈米簇為探針應用於偵測榖胱甘肽....................................80
3.6 蛋白質修飾金奈米簇為探針應用於偵測葡萄糖........................................80
3.7 金奈米簇作為催化劑催化受質....................................................................83
4、結論...............................................................................................................................85
5、參考資料.......................................................................................................................86
參考文獻 References
1. Tan, W. H.; Tan, L.; Li, Y.; Drake, T. J.; Moroz, L.; Wang, K. M.; Li, J.; Munteanu, A.; Yang, C. Y. J.; Martinez, K., Molecular beacons for bioanalytical applications. Analyst 2005, 130, 1002-1005.
2. Marras, S. A., Interactive Fluorophore and Quencher Pairs for Labeling Fluorescent Nucleic Acid Hybridization Probes. Mol. Biotechnol. 2008, 38, 247-255.
3. Lin, Y. H.; Tseng, W. L., A room-temperature adenosine-based molecular beacon for highly sensitive detection of nucleic acids. Chem. Commun. 2012, 48, 6262-6264.
4. Bourdoncle, A.; Torres, A. E.; Gosse, C.; Lacroix, L.; Vekhoff, P.; Le Saux, T.; Jullien, L.; Mergny, J. L., Quadruplex-Based Molecular Beacons as Tunable DNA Probes. J. Amer. Chem. Soc. 2006, 128, 11094-11105.
5. Yang, R.; Jin, J.; Long, L.; Wang, Y.; Wang, H.; Tan, W., Reversible molecular switching of molecular beacon: controlling DNA hybridization kinetics and thermodynamics using mercury(ii) ions. Chem. Commun. 2009, 322-324.
6. Lin, Y. W.; Ho, H. T.; Huang, C. C.; Chang, H. T., Fluorescence detection of single nucleotide polymorphisms using a universal molecular beacon. Nucleic Acids Res. 2008, 36, e123.
7. Wang, Y.; Li, J.; Jin, J.; Wang, H.; Tang, H.; Yang, R.; Wang, K., Strategy for molecular beacon binding readout: separating molecular recognition element and signal reporter. Anal. Chem. 2009, 81, 9703-9709.
8. Wang, Y.; Li, J.; Wang, H.; Jin, J.; Liu, J.; Wang, K.; Tan, W.; Yang, R., Silver Ions-Mediated Conformational Switch: Facile Design of Structure-Controllable Nucleic Acid Probes. Anal. Chem. 2010, 82, 6607-6612.
9. Ono, A.; Togashi, H., Highly Selective Oligonucleotide-Based Sensor for Mercury(II) in Aqueous Solutions. Angew. Chem. Int. Ed. 2004, 43, 4300-4302.
10. Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, I.; Tanaka, Y., Specific interactions between silver(i) ions and cytosine-cytosine pairs in DNA duplexes. Chem. Commun. 2008, 4825-4827.
11. Xu, H.; Hepel, M., “Molecular Beacon”-Based Fluorescent Assay for Selective Detection of Glutathione and Cysteine. Anal. Chem. 2011, 83, 813-819.
12. Stobiecka, M.; Molinero, A. A.; Chalupa, A.; Hepel, M., Mercury/homocysteine ligation-induced ON/OFF-switching of a T-T mismatch-based oligonucleotide molecular beacon. Anal. Chem. 2012, 84, 4970-4978.
13. Li, J.; Yang, S.; Zhou, W.; Liu, C.; Jia, Y.; Zheng, J.; Li, Y.; Li, J.; Yang, R., A gold nanocarrier and DNA-metal ligation-based sensing ensemble for fluorescent assay of thiol-containing amino acids and peptides. Chem. Commun. 2013, 49, 7932-7934.
14. Zhou, Z.; Huang, H.; Chen, Y.; Liu, F.; Huang, C. Z.; Li, N., A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design. Biosens. Bioelectron. 2014, 52, 367-373.
15. Kuo, C. Y.; Tseng, W. L., Adenosine-based molecular beacons as light-up probes for sensing heparin in plasma. Chem. Commun. 2013, 49, 4607-4609.
16. Burgos, E. S.; Gulab, S. A.; Cassera, M. B.; Schramm, V. L., Luciferase-Based Assay for Adenosine: Application to S-Adenosyl-l-homocysteine Hydrolase. Anal. Chem. 2012, 84, 3593-3598.
17. Baric, I.; Fumic, K.; Glenn, B.; Cuk, M.; Schulze, A.; Finkelstein, J. D.; James, S. J.; Mejaski-Bosnjak, V.; Pazanin, L.; Pogribny, I. P.; Rados, M.; Sarnavka, V.; Scukanec-Spoljar, M.; Allen, R. H.; Stabler, S.; Uzelac, L.; Vugrek, O.; Wagner, C.; Zeisel, S.; Mudd, S. H., S-adenosylhomocysteine hydrolase deficiency in a human: A genetic disorder of methionine metabolism. Proc. Nat. Acad. Sci. 2004, 101, 4234-4239.
18. Bujnicki, J. M.; Prigge, S. T.; Caridha, D.; Chiang, P. K., Structure, evolution, and inhibitor interaction of S-adenosyl-L-homocysteine hydrolase from Plasmodium falciparum. Proteins 2003, 52, 624-632.
19. Palmer, J. L.; Abeles, R. H., The mechanism of action of S-adenosylhomocysteinase. J. Biol. Chem. 1979, 254, 1217-26.
20. Lozada-Ramirez, J. D.; Martinez-Martinez, I.; Sanchez-Ferrer, A.; Garcia-Carmona, F., A colorimetric assay for S-adenosylhomocysteine hydrolase. J. Biochem. Biophys. Methods 2006, 67, 131-140.
21. Lin, J. H.; Chang, C. W.; Wu, Z. H.; Tseng, W. L., Colorimetric Assay for S-Adenosylhomocysteine Hydrolase Activity and Inhibition Using Fluorosurfactant-Capped Gold Nanoparticles. Anal. Chem. 2010, 82, 8775-8779.
22. Oram, P. D.; Fang, X. J.; Fernando, Q.; Letkeman, P.; Letkeman, D., The Formation Constants of Mercury(II)−Glutathione Complexes. Chem. Res. Toxicol. 1996, 9, 709-712.
23. Kiy, M. M.; Jacobi, Z. E.; Liu, J., Metal-induced specific and nonspecific oligonucleotide folding studied by FRET and related biophysical and bioanalytical implications. Chem. Eur. J. 2012, 18, 1202-1208.
24. Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; Machinami, T.; Ono, A., MercuryII-Mediated Formation of Thymine−HgII−Thymine Base Pairs in DNA Duplexes. J. Amer. Chem. Soc. 2006, 128, 2172-2173.
25. Monostori, P.; Wittmann, G.; Karg, E.; Túri, S., Determination of glutathione and glutathione disulfide in biological samples: An in-depth review. J. Chromatogr. B 2009, 877, 3331-3346.
26. Perła-Kaján, J.; Jakubowski, H., Paraoxonase 1 and homocysteine metabolism. Amino Acids 2012, 43, 1405-1417.
27. Miao, Y.; He, N.; Zhu., J.-J., History and New Developments of Assays for Cholinesterase Activity and Inhibition. Chem. Rev. 2010, 110, 5216-5234.
28. Carlucci, F.; Tabucchi, A.; Aiuti, A.; Rosi, F.; Floccari, F.; Pagani, R.; Marinello, E., Capillary electrophoresis in diagnosis and monitoring of adenosine deaminase deficiency. Clin. Chem. 2003, 49, 1830-1838.
29. Ueland, P. M., Pharmacological and biochemical aspects of S-adenosylhomocysteine and S-adenosylhomocysteine hydrolase. Pharmacol. Rev. 1982, 34, 223-253.
30. Liu, J.; Lu, Y., Smart Nanomaterials Responsive to Multiple Chemical Stimuli with Controllable Cooperativity. Adv. Mater. 2006, 18, 1667-1671.
31. Song, P.; Xiang, Y.; Xing, H.; Zhou, Z.; Tong, A.; Lu, Y., Label-Free Catalytic and Molecular Beacon Containing an Abasic Site for Sensitive Fluorescent Detection of Small Inorganic and Organic Molecules. Anal. Chem. 2012, 84, 2916-2922.
32. Xiang, Y.; Tong, A.; Lu, Y., Abasic Site-Containing DNAzyme and Aptamer for Label-Free Fluorescent Detection of Pb2+ and Adenosine with High Sensitivity, Selectivity, and Tunable Dynamic Range. J. Am. Chem. Soc. 2009, 131, 15352-15357.
33. Liu, J.; Lu, Y., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew. Chem. Int. Ed. 2006, 45, 90-94.
34. Kitahara, K.; Noguchi, Y.; Itoh, S.; Chiba, N.; Tohyama, T.; Nagashima, K.; Hanada, T.; Yoshihama, I.; Arai, S., Complexation behavior of mono- and disaccharides by the vinylbenzeneboronic acid–divinylbenzene copolymer resins packed in a high-performance liquid chromatographic column. J. Chromatogr. A 2009, 1216, 7415-7421.
35. Ren, L.; Liu, Z.; Dong, M.; Ye, M.; Zou, H., Synthesis and characterization of a new boronate affinity monolithic capillary for specific capture of cis-diol-containing compounds. J. Chromatogr. A 2009, 1216, 4768-4774.
36. Gautier, C.; Bürgi, T., Chiral Inversion of Gold Nanoparticles. J. Am. Chem. Soc. 2008, 130, 7077-7084.
37. Bigioni, T. P.; Whetten, R. L.; Dag, Ö., Near-Infrared Luminescence from Small Gold Nanocrystals. J. Phys. Chem. B 2000, 104, 6983-6986.
38. Crespo, P.; Litrán, R.; Rojas, T. C.; Multigner, M.; de la Fuente, J. M.; Sánchez-López, J. C.; García, M. A.; Hernando, A.; Penadés, S.; Fernández, A., Permanent Magnetism, Magnetic Anisotropy, and Hysteresis of Thiol-Capped Gold Nanoparticles. Phys. Rev. Lett. 2004, 93, 087204.
39. Shang, L.; Dong, S.; Nienhaus, G. U., Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401-418.
40. Lu, Y.; Chen, W., Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594-3623.
41. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. Chem. Commun. 1994, 801-802.
42. Link, S.; Beeby, A.; FitzGerald, S.; El-Sayed, M. A.; Schaaff, T. G.; Whetten, R. L., Visible to Infrared Luminescence from a 28-Atom Gold Cluster. J. Phys. Chem. B 2002, 106, 3410-3415.
43. Negishi, Y.; Takasugi, Y.; Sato, S.; Yao, H.; Kimura, K.; Tsukuda, T., Magic-Numbered Aun Clusters Protected by Glutathione Monolayers (n = 18, 21, 25, 28, 32, 39):  Isolation and Spectroscopic Characterization. J. Am. Chem. Soc. 2004, 126, 6518-6519.
44. Wang, Z.; Cai, W.; Sui, J., Blue Luminescence Emitted from Monodisperse Thiolate-Capped Au11 Clusters. ChemPhysChem 2009, 10, 2012-2015.
45. Zheng, J.; Petty, J. T.; Dickson, R. M., High Quantum Yield Blue Emission from Water-Soluble Au8 Nanodots. J. Am. Chem. Soc. 2003, 125, 7780-7781.
46. Zheng, J.; Zhang, C.; Dickson, R. M., Highly Fluorescent, Water-Soluble, Size-Tunable Gold Quantum Dots. Phys. Rev. Lett. 2004, 93, 077402.
47. Lin, C.-A. J.; Yang, T. Y.; Lee, C. H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J. L.; Wang, H. H.; Yeh, H. I.; Parak, W. J.; Chang, W. H., Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. ACS Nano 2009, 3, 395-401.
48. Duan, H.; Nie, S., Etching Colloidal Gold Nanocrystals with Hyperbranched and Multivalent Polymers:  A New Route to Fluorescent and Water-Soluble Atomic Clusters. J. Am. Chem. Soc. 2007, 129, 2412-2413.
49. Yan, L.; Cai, Y.; Zheng, B.; Yuan, H.; Guo, Y.; Xiao, D.; Choi, M. M. F., Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission. J. Mater. Chem. 2012, 22, 1000-1005.
50. Vázquez-Vázquez, C.; Bañobre-López, M.; Mitra, A.; López-Quintela, M. A.; Rivas, J., Synthesis of Small Atomic Copper Clusters in Microemulsions. Langmuir 2009, 25, 8208-8216.
51. Reetz, M. T.; Helbig, W., Size-Selective Synthesis of Nanostructured Transition Metal Clusters. J. Am. Chem. Soc. 1994, 116, 7401-7402.
52. Xie, J.; Zheng, Y.; Ying, J. Y., Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889.
53. Guo, C.; Irudayaraj, J., Fluorescent Ag Clusters via a Protein-Directed Approach as a Hg(II) Ion Sensor. Anal. Chem. 2011, 83, 2883-2889.
54. Valden, M.; Lai, X.; Goodman, D. W., Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 1998, 281, 1647-1650.
55. Wang, H.-H.; Lin, C.-A. J.; Lee, C.-H.; Lin, Y.-C.; Tseng, Y.-M.; Hsieh, C.-L.; Chen, C.-H.; Tsai, C.-H.; Hsieh, C.-T.; Shen, J.-L.; Chan, W.-H.; Chang, W. H.; Yeh, H.-I., Fluorescent Gold Nanoclusters as a Biocompatible Marker for In Vitro and In Vivo Tracking of Endothelial Cells. ACS Nano 2011, 5, 4337-4344.
56. Belloni, J., Photography: enhancing sensitivity by silver-halide crystal doping. Radiat. Phys. Chem. 2003, 67, 291-296.
57. Holmes, P.; James, K. A. F.; Levy, L. S., Is low-level environmental mercury exposure of concern to human health? Sci. Total Environ. 2009, 408, 171-182.
58. Xie, J.; Zheng, Y.; Ying, J. Y., Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions. Chem. Commun. 2010, 46, 961-963.
59. Lin, Y. H.; Tseng, W. L., Ultrasensitive Sensing of Hg2+ and CH3Hg+ Based on the Fluorescence Quenching of Lysozyme Type VI-Stabilized Gold Nanoclusters. Anal. Chem. 2010, 82, 9194-9200.
60. Shang, L.; Dong, S., Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem. Commun. 2008, 1088-1090.
61. Chen, W.; Tu, X.; Guo, X., Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem. Commun. 2009, 1736-1738.
62. Lan, G.-Y.; Huang, C.-C.; Chang, H.-T., Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem. Commun. 2010, 46, 1257-1259.
63. Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R., ph-Dependent Synthesis of Pepsin-Mediated Gold Nanoclusters with Blue Green and Red Fluorescent Emission. Adv. Funct. Mater. 2011, 21, 3508-3515.
64. Goswami, N.; Giri, A.; Bootharaju, M. S.; Xavier, P. L.; Pradeep, T.; Pal, S. K., Copper Quantum Clusters in Protein Matrix: Potential Sensor of Pb2+ Ion. Anal. Chem. 2011, 83, 9676-9680.
65. Li, H.; Guo, Y.; Xiao, L.; Chen, B., Selective and sensitive detection of acetylcholinesterase activity using denatured protein-protected gold nanoclusters as a label-free probe. Analyst 2014, 139, 285-289.
66. Xia, X.; Long, Y.; Wang, J., Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose. Anal. Chim. Acta 2013, 772, 81-86.
67. Chen, X.; Zhou, Y.; Peng, X.; Yoon, J., Fluorescent and colorimetric probes for detection of thiols. Chem. Soc. Rev. 2010, 39, 2120-2135.
68. Tian, D.; Qian, Z.; Xia, Y.; Zhu, C., Gold Nanocluster-Based Fluorescent Probes for Near-Infrared and Turn-On Sensing of Glutathione in Living Cells. Langmuir 2012, 28, 3945-3951.
69. Yuan, X.; Tay, Y.; Dou, X.; Luo, Z.; Leong, D. T.; Xie, J., Glutathione-Protected Silver Nanoclusters as Cysteine-Selective Fluorometric and Colorimetric Probe. Anal. Chem. 2012, 85, 1913-1919.
70. Chen, T.-H.; Tseng, W.-L., (Lysozyme Type VI)-Stabilized Au8 Clusters: Synthesis Mechanism and Application for Sensing of Glutathione in a Single Drop of Blood. Small 2012, 8, 1912-1919.
71. Liu, C.-L.; Wu, H.-T.; Hsiao, Y.-H.; Lai, C.-W.; Shih, C.-W.; Peng, Y.-K.; Tang, K.-C.; Chang, H.-W.; Chien, Y.-C.; Hsiao, J.-K.; Cheng, J.-T.; Chou, P.-T., Insulin-Directed Synthesis of Fluorescent Gold Nanoclusters: Preservation of Insulin Bioactivity and Versatility in Cell Imaging. Angew. Chem. Int. Ed. 2011, 50, 7056-7060.
72. Chen, Y.; Gu, X.; Nie, C.-G.; Jiang, Z.-Y.; Xie, Z.-X.; Lin, C.-J., Shape controlled growth of gold nanoparticles by a solution synthesis. Chem. Commun. 2005, 4181-4183.
73. Smith, D. K.; Miller, N. R.; Korgel, B. A., Iodide in CTAB Prevents Gold Nanorod Formation. Langmuir 2009, 25, 9518-9524.
74. Inhee, C.; Yeonho, C., Plasmonic Nanosensors: Review and Prospect. IEEE. J. Sel. Top. Quant. 2012, 18, 1110-1121.
75. Li, H.-W.; Ai, K.; Wu, Y., Fluorescence visual gel-separation of dansylated BSA-protected gold-nanoclusters. Chem. Commun. 2011, 47, 9852-9854.
76. Liu, J.-M.; Chen, J.-T.; Yan, X.-P., Near Infrared Fluorescent Trypsin Stabilized Gold Nanoclusters as Surface Plasmon Enhanced Energy Transfer Biosensor and in Vivo Cancer Imaging Bioprobe. Anal. Chem. 2013, 85, 3238-3245.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.4.181
論文開放下載的時間是 校外不公開

Your IP address is 3.143.4.181
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code