Responsive image
博碩士論文 etd-0614115-163817 詳細資訊
Title page for etd-0614115-163817
論文名稱
Title
金銀合金薄膜電阻式記憶體之製作及性能分析
Fabrication and characterization of Au-Ag alloy thin film resistance random access memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
153
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-30
繳交日期
Date of Submission
2015-07-21
關鍵字
Keywords
奈米孔洞金銀合金、金銀合金阻絲模型、電阻式隨機存取記憶體、表面形貌、導電橋式隨機存取記憶體、純銀薄膜、金銀合金薄膜
Au-Ag alloy thin film, pure Ag thin film, surface morphology, Au-Ag alloy filament model, Conductive Bridging Random Access Memory (CBRAM), Resistance random access memory (RRAM), nanoporous Au-Ag alloy
統計
Statistics
本論文已被瀏覽 5668 次,被下載 70
The thesis/dissertation has been browsed 5668 times, has been downloaded 70 times.
中文摘要
在現今科技生活中,可攜帶式電子產品已經是不可或缺的物品,而記憶體在這些電子產品中更是扮演很重要的角色。隨著現今科技的進步,可攜帶式電子產品傾向於做成輕薄短小且節能,因此次世代非揮發式記憶體被深入地研究發展。其中以電阻式非揮發式記憶體俱有結構簡單、高密度、操作電壓低、讀寫速度快、儲存時間長……等優點,被稱為最具有潛力的次世代非揮發式記憶體。
在本研究中,利用共濺鍍法將二氧化矽及金銀合金薄膜沈積在工研院利用黃光製程製作出的TiN下電極上,金銀合金成分分別是以金元素為基礎的Au70Ag30,以及以銀元素為基礎的Au30Ag70。將金銀合金薄膜和純銀薄膜的非揮發式電阻式記憶體分別進行電性的量測,並互相比較其特性。實驗結果顯示,相較於銀薄膜的非揮發式電阻式記憶體,金銀合金薄膜的非揮發式電阻式記憶體具有較快的操作速度以及較為省電。之後又進一步研究以金銀合金薄膜為上電極之電阻式記憶體在操作時的電流傳導機制,以及模擬金屬阻絲在絕緣層二氧化矽中生長情形。
在另外一部分研究中,製作以金銀合金薄膜為下電極之電阻式記憶體,並且利用化學去合金法將銀元素腐蝕後留下奈米孔洞金銀合金,因此能夠改變腐蝕時間進而控制下電極之表面形貌、粗糙度以及表面成分。
Abstract
In the modern life, the portable electric products are indispensable. Moreover the memory plays an important role on these products. Today, the manufacturing of portable electric products tends to be small, thin, compact, and energy-saving with technological advancements. Therefore, the next generation RRAM has been greatly focused and studied. The RRAM is known for the most potential next generation non-volatile memories, due to the advantages of simple structure, high density, low operational voltage, high read-write speed, and long storage time.
In this thesis, the Au70Ag30 and Au30Ag70 alloy thin film and the SiO2 thin film are coated on the TiN electrode which was provided from Industrial Technology Research Institute (ITRI) via Lithography Electroforming Micro Molding technique. The results show that the Au-Ag alloy thin film owns comparably higher operational speed and is more energy-saving than the pure Ag thin film. The current conductive mechanisms and the metal filament models in the insulator layer of Au30Ag70/SiO2/TiN RRAM device are study and discussed. The other section is the fabrication of nanoporous Au-Ag alloy for the bottom electrode of RRAM devices. This section is talking about using the chemical dealloying method to control the surface morphology of the bottom electrode of RRAM devices. The results show that the surface morphology, roughness and composition can be controlled via immersing in HNO3 for different periods of time.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 v
Abstract vi
Table of Content vii
List of Tables x
List of Figures xii
Chapter 1 Introduction 1
1-1 The development of memory devices 1
1-2 Introduction of Conductive Bridging Random Access Memory 2
1-3 Motivation and aim of this study 3
Chapter 2 Background and Literature Review 5
2-1 Next-generation nonvolatile memories 5
2-1-1 The introduction of resistive random-access memory (RRAM) 5
2-1-2 The switching mechanism of resistive random-access memory (RRAM) 6
2-1-3 The switching mechanism of Conductive Bridging Random Access Memory (CBRAM) 6
2-2 The current conduction mechanism in an insulating layer 7
2-2-1 Ohmic conduction 8
2-2-2 Schottky emission 9
2-2-3 Poole-Frenkel emission 9
2-2-4 Space charge limited conduction 10
2-2-5 Hopping conduction 11
2-3 Nanoporous materials 12
2-3-1 Introduction of nanoporous materials 12
2-3-2 Evolution of nanoporous noble metals 13
2-4 Corrosion 14
2-5 Chemical dealloying 16
2-6 Physical vapor deposition (PVD) 17
2-6-1 Introduction of sputtering 18
2-6-2 DC/RF magnetic sputtering process 20
2-6-3 Growth of sputter-deposited thin film 22
2-7 X-ray photoelectron spectroscopy (XPS) 23
Chapter 3 Experimental procedures 25
3-1 Sample preparation of the Au-Ag alloy/SiO2/TiN device 26
3-1-1 Materials 26
3-1-2 Film preparation 26
3-2 Sample preparation of the Pt/SiO2/Au-Ag alloy device 27
3-2-1 Materials 29
3-2-2 Substrate preparation 29
3-2-3 Film preparation 30
3-2-4 Chemical dealloying 31
3-3 Property measurements and analyses 31
3-3-1 X-ray diffraction (XRD) 31
3-3-2 Scanning electron microscopy (SEM) 32
3-3-3 Atomic Force Microscopy (AFM) 32
3-3-4 X-ray photoelectron spectroscopy (XPS) 32
3-3-5 N&K analysis 33
3-3-6 3D alpha-step profilometer 33
3-3-7 Multi-function semiconductor parameter analyzer 34
Chapter 4 Results and discussion 35
4-1 The RRAM device with the Au-Ag-alloy/SiO2/TiN structure 35
4-1-1 X-ray photoelectron spectroscopy (XPS) analysis 35
4-1-2 Fourier Transform Infrared Spectroscopy (FTIR) 36
4-1-3 Transmission Electron Microscopy (TEM) results 37
4-1-4 The electrical measurement and analyses 37
4-2 Fabrication and analysis of nanoporous Au-Ag alloy for bottom electrode of a RRAM device 45
4-2-1 Chemical dealloying 46
4-2-2 X-ray diffraction analysis 46
4-2-3 Surface morphology and structure of thin films 47
4-2-4 Atomic force microscope (AFM) analysis 47
4-2-5 X-ray photoelectron spectroscopy (XPS) analysis 48
Chapter 5 Conclusions 49
References 51
Tables 55
Figures 65
參考文獻 References
[1] F. Pan, C. Chen, Z.S. Wang, Y.C. Yang, J. Yang, F. Zeng, Prog Nat Sci-Mater, 20 (2010) 1-15.
[2] R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv Mater, 21 (2009) 2632-2663.
[3] J.C. Scott, Science, 304 (2004) 62-63.
[4] D. Kahng, S.M. Sze, At&T Tech J, 46 (1967) 1288.
[5] Y. Nishi, Curr Appl Phys, 11 (2011) E101-E103.
[6] A. Sawa, Materials Today, 11 (2008) 28-36.
[7] G.I. Meijer, Science, 319 (2008) 1625-1626.
[8] S.S. Sheu, K.H. Cheng, P.C. Chiang, W.P. Lin, H.Y. Lee, P.S. Chen, Y.S. Chen, T.Y. Wu, F.T. Chen, K.L. Su, M.J. Kao, M.J. Tsai, M.F. Chang, Ieee Des Test Comput, 28 (2011) 64-71.
[9] Y. Bernard, V.T. Renard, P. Gonon, V. Jousseaume, Microelectron Eng, 88 (2011) 814-816.
[10] M. Haemori, T. Nagata, T. Chikyow, Appl Phys Express, 2 (2009).
[11] U. Russo, D. Kamalanathan, D. Ielmini, A.L. Lacaita, M.N. Kozicki, Ieee T Electron Dev, 56 (2009) 1040-1047.
[12] C. Schindler, M. Weides, M.N. Kozicki, R. Waser, Applied Physics Letters, 92 (2008) 122910.
[13] C. Schindler, G. Staikov, R. Waser, Applied Physics Letters, 94 (2009) 072109.
[14] T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Nanotechnology, 21 (2010).
[15] K. Ono, K. Kurotsuchi, Y. Fujisaki, R. Takemura, M. Terao, N. Takaura, Jpn J Appl Phys, 48 (2009).
[16] S.M. Yu, H.S.P. Wong, Ieee T Electron Dev, 58 (2011) 1352-1360.
[17] H. Akinaga, H. Shima, P Ieee, 98 (2010) 2237-2251.
[18] S. Yu, X. Guan, H.S.P. Wong, Applied Physics Letters, 99 (2011) 063507.
[19] M. Fiebig, J Phys D Appl Phys, 38 (2005) R123-R152.
[20] S. Zhang, S.B. Long, W.H. Guan, Q. Liu, Q. Wang, M. Liu, J Phys D Appl Phys, 42 (2009).
[21] A. Baikalov, Y.Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y.Y. Sun, Y.Y. Xue, C.W. Chu, Applied Physics Letters, 83 (2003) 957-959.
[22] S. Tsui, A. Baikalov, J. Cmaidalka, Y.Y. Sun, Y.Q. Wang, Y.Y. Yue, C.W. Chu, L. Chen, A.J. Jacobson, Applied Physics Letters, 85 (2004) 317-319.
[23] T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, Y. Tokura, Applied Physics Letters, 86 (2005).
[24] A. Sawa, T. Fujii, M. Kawasaki, Y. Tokura, Applied Physics Letters, 85 (2004) 4073-4075.
[25] R. Fors, S.I. Khartsev, A.M. Grishin, Phys Rev B, 71 (2005).
[26] M.J. Rozenberg, I.H. Inoue, M.J. Sanchez, Applied Physics Letters, 88 (2006).
[27] M.J. Rozenberg, I.H. Inoue, M.J. Sanchez, Phys Rev Lett, 92 (2004).
[28] X. Guo, C. Schindler, S. Menzel, R. Waser, Applied Physics Letters, 91 (2007) 133513.
[29] F.C. Chiu, Adv Mater Sci Eng, (2014).
[30] T.Y. Tseng, American scientific publishers, 4 (2009) 165-176.
[31] F. Schuth, Angew Chem Int Edit, 42 (2003) 3604-3622.
[32] Z. Dai, H. Ju, TrAC Trends in Analytical Chemistry, 39 (2012) 149-162.
[33] 張文彥, 奚正平, 方明, 李亞寧, 李廣忠, 張龍, 稀有金屬材料與工程, 37 (2008) 1129-1133.
[34] G. Masing, Zeitschrift für anorganische und allgemeine Chemie, 118 (1921) 293-308.
[35] J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature, 410 (2001) 450-453.
[36] Y. Ding, Y.J. Kim, J. Erlebacher, Adv Mater, 16 (2004) 1897-1900.
[37] H.B. Lu, Y. Li, F.H. Wang, J Alloy Compd, 465 (2008) 139-144.
[38] X.G. Wang, Z. Qi, C.C. Zhao, W.M. Wang, Z.H. Zhang, J Phys Chem C, 113 (2009) 13139-13150.
[39] G.J. Li, X.P. Song, Z.B. Sun, S.C. Yang, B.J. Ding, S. Yang, Z.M. Yang, F. Wang, Solid State Sci, 13 (2011) 1379-1384.
[40] C.C. Zhao, Z. Qi, X.G. Wang, Z.H. Zhang, Corros Sci, 51 (2009) 2120-2125.
[41] 柯賢文, 全華科技圖書股份有限公司, (2006).
[42] K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams, C. Buzea, Review of Scientific Instruments, 75 (2004) 1089-1097.
[43] O.D. Velev, E.W. Kaler, Adv Mater, 12 (2000) 531-534.
[44] G. Tammann, 107 (1919), Journal of Inorganic and General Chemistry, 107 (1919).
[45] A.J. Forty, P. Durkin, Philos Mag A, 42 (1980) 295-318.
[46] K. Seshan, Handbook of Thin-Film Deposition Processes and Techniques, Noyes Publications, Park Ridge, N.J., USA, (1988).
[47] K. Wasa, S. Hayakawa, Handbook of Sputter Deposition Technology, Noyes Publications, Park Ridge, NJ, 24 (1992).
[48] D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Noyes Publications, Westwood (1998).
[49] W. Zou, Synthesis of Giant Magnetoresistive Multilayers, University of Virginia, (2001).
[50] M. Copel, M.C. Reuter, E. Kaxiras, R.M. Tromp, Phys Rev Lett, 63 (1989) 632-635.
[51] S. Hüfner, Photoelectron Spectroscopy: Principles and Applications, Springer, (2003).
[52] A.T. Dinsdale, Calphad, 15 (1991) 317-425.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code