Responsive image
博碩士論文 etd-0614116-120339 詳細資訊
Title page for etd-0614116-120339
論文名稱
Title
銀-鉍-硒三元系統之相圖與立方結構AgBiSe2之熱電性質
Phase diagrams of the ternary Ag-Bi-Se system and thermoelectric properties of cubic AgBiSe2 materials
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-29
繳交日期
Date of Submission
2016-07-14
關鍵字
Keywords
熱電材料、AgBiSe2、等溫橫截面圖、Bridgman長晶法、液相線投影圖
AgBiSe2, isothermal section, thermoelectric material, Bridgman growth, liquidus projection
統計
Statistics
本論文已被瀏覽 5663 次,被下載 146
The thesis/dissertation has been browsed 5663 times, has been downloaded 146 times.
中文摘要
現今能源危機是全球共同問題之一,研究替代能源及提高能源材料使用效率,都是現今能源發展的方向。熱電材料是可以直接轉換熱與電兩種不同的能量,將廢熱轉為電能提升能源使用效率,因此在能源研究上受到很大的關注及討論。AgBiSe2 為立方I-V-VI2之結構的熱電材料,具有極端非和諧性的晶格震動,而導致極低的熱導率(κ=κl+κe),因此具有良好的熱電性質。相圖為材料系統之基礎,是了解材料相轉變及內部結構變化資訊之重要來源。對於熱電材料而言,其結構與性質十分相關,因此必須以相圖為基礎來研究熱電材料。Ag-Bi-Se三元系統相圖及AgBiSe2-GeSe擬二元相圖為研究Ag-Bi-Se-Ge熱電系統之重要基礎,然而目前文獻中並無Ag-Bi-Se和Ag-Ge-Se三元系統相圖及AgBiSe2-GeSe和AgBiSe2-AgGeSe2擬二元相圖。因此本研究主要以實驗與分析來建立上述三元系統及擬二元相圖,並依據相圖找出I-V-VI2穩定存在之相區,進行熱電性質的量測。本研究的工作將包括: (1) 以實驗測定Ag-Bi-Se三元系統之液相線投影圖、(2) 以實驗測定Ag-Bi-Se三元系統和AgBiSe2-GeSe擬二元系統的500˚C之等溫橫截面圖、(3) 於上述研究中找出I-V-VI2之結構合金,(4)量測AgBiSe2之熱電性質以及四元合金AgBiSe2摻雜GeSe之熱電性質。
Abstract
Energy crisis is one of the world-wide issues nowadays. Recently, the energy developments focus on searching alternative energy and enhance the efficiency of energy materials. Thermoelectric material has attracted great attention because it can directly convert waste heat into electricity, resulting in increasing the energy usage efficiency. The I-V-VI2 AgBiSe2, which adopts cubic structure, is a promising thermoelectric material and is known to exhibit nonhomogeneous lattice vibration that leads to low thermal conductivity. Phase diagrams are basic yet essential materials information that probe the thermodynamically phase stability behaviors. With an aid of phase diagram and microstructural evolution, the thermoelectric properties can be optimized. Herein, we aim to determine the ternary phase diagram of Ag-Bi-Se system and Ag-Ge-Se system and the Pseudobinary phase diagram of AgBiSe2-GeSe. The efforts of this study include: (1) determining the liquidus projection by air-cooled or water-quenched alloys, (2) constructing the 500˚C isothermal section by thermally-equilibrated alloys, (3) locating the homogeneity range of the cubic I-V-VI2 phase, and (4) measuring the thermoelectric property of ternary Ag-Bi-Se and quaternary Ag-Bi-Se-Ge alloys. Metallographic observations upon the quenched or thermally-equilibrated
ternary alloys are conducted using SEM while the phase identifications and compositional analysis are carried out by XRD and EDS, respectively.
目次 Table of Contents
目錄
致謝 i
摘要 ii
Abstract iii
圖目錄 vi
表目錄 xi
目錄 xii
一、 前言 1
二、文獻回顧 6
2.1相圖 6
2.1-1 Ag-Bi二元系統相平衡圖 6
2.1-2 Ag-Se 二元系統相平衡圖 6
2.1-3 Bi-Se二元系統相平衡圖 7
2.1-4 Ge-Se二元系統相平衡圖 7
2.1-5 Ag-Ge二元系統相平衡圖 8
2.1-6 Ag2Se-Bi2Se3 三元系統等值剖面圖 8
2.1-7 Ag2Se-BiSe 三元系統等值剖面圖 8
2.1-7 Ag-Bi2Se3 三元系統等值剖面圖 8
2.1-8 Ag8GeSe6-GeSe三元系統等值剖面圖 9
2.1-9 Ag2Se-GeSe2三元系統等值剖面圖 9
2.2 熱電材料 10
2.2-1 AgBiSe2熱電材料 10
三、研究方法 22
3.1 Ag-Bi-Se 三元系統相平衡 22
3.1-1 合金製備 22
3.1-2 相平衡實驗及分析 22
3.2 Ag-Bi-Se三元系統液相線投影圖 23
3.2-1 液相線投影圖合金製備 23
3.2-2 液相線投影圖合金分析 24
3.2-3 微熱差分析 24
3.3 熱電性質 25
四、結果與討論 26
4.1 Ag-Bi-Se三元系統等溫橫截面圖 26
4.1-1 Liquid+ Ag2Se 兩相區 32
4.1-2 Liquid+ AgBiSe2兩相區 38
4.1-3 Ag2Se+AgBiSe2兩相區 46
4.1-4 Liquid+AgBiSe2+Ag2Se 三相區 48
4.1-5 Ag+Ag2Se+Liquid 三相區 57
4.1-6 BiSe+Liquid+AgBiSe2三相區 58
4.1-7 Bi2Se3+ Liquid+AgBiSe2三相區 60
4.2 Ag-Bi-Se 三元系統液相線投影圖 62
4.2-1 首要析出相:Ag2Se 66
4.2-2 首要析出相:AgBiSe2 73
4.2-3 首要析出相:Ag 81
4.2-4 首要析出相:Se 82
4.2-5 首要析出相:Bi2Se3 86
4.2-6 首要析出相:Bi4Se5 89
4.2-7 首要析出相:BiSe: 90
4.2-8 首要析出相:Bi3Se2 92
4.2-9 首要析出相:Bi 93
4.3 熱電性質 94
4.3-1 AgBiSe2之熱電性質 96
4.3-1-1 AgBiSe2-Bi2Se3之熱電性質 96
4.3-1-2 AgBiSe2-Bi4Se5之熱電性質 103
4.3-1-3 AgBiSe2-Ag2Se之熱電性質 109
4.3-2 AgBiSe2-GeSe之熱電性質 117
五、結論 125
5.1 相圖 125
5.2 熱電性質 126
六、參考文獻 127
參考文獻 References
六、參考文獻
1. T.M. Tritt and M.A. Saber, Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View, Materials Research Society Bulletin, Vol.31, pp. 188-194,(2006).
2. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, Vol.321, pp. 1457-1461,(2008).
3. F.R. Yu, J.J. Zhang, D.L. Yu, J.L. He, Z.Y. Liu, Bo Xu, Y.J. Tian, Enhanced thermoelectric performance of AgSbTe(2) synthesized by high pressure and high temperature, Journal of Applied Physics, Vol.104, pp.094303–094305(2009).
4. S. Bhattacharya, A. Bohra, R. Basu, R. Bhatt, S. Ahmad, K. N. Meshram, A. K. Debnath, A. Singh, K. Sarkar, M. Navneethan, Y. Hayakawa, D. K. Aswal and S. K. Gupta, High thermoelectric performance of (AgCrSe2)(0.5)(CuCrSe2)(0.5) nano-composites having all-scale natural hierarchical architectures, Journal of Materials Chemistry A, Vol.2, pp.17122–17129,(2014).
5. J. Androulakis, K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. D’Angelo, A. Downey, T. Hogan, M.G. Kanatzidis, Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)(m)SbTe2+m, Advanced Materials., Vol.18, pp. 1170–1173.(2006).
6. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science, Vol.320, pp.634–638.7,(2008).

7. M.R. Marie, G. Brun, J.C. Tedenac, J. Mater. phase-equilibria in the Sb2Te3-Ag2Te system, Science., Vol.20, No. 2, pp.730–735,(1985).
8. S.H. Yang, T.J. Zhu, T. Sun, J. He, S.N. Zhang, X.B. Zhao, Thermoelectric Materials (GeTe)x(AgSbTe2)100-x, Nanotechnology, Vol.19, pp.245707–245711, (2008).
9. D. T. Morelli, V. Jovovic and J. P. Heremans, Intrinsically Minimal Thermal Conductivity in Cubic I-V-VI2 Semiconductors, The American Physical Society, Vol. 101, pp.035901-1 - 035901-4,(2008)
10. E. M. Levin, M. F. Besser, and R. Hanus, Electronic and thermal transport in GeTe: A versatile base for thermoelectric materials, Journal of Applied Physics, Vol.114, pp.083713,(2013).
11. J. DiSalvo, Thermoelectric Cooling and Power Generation, Science, Vol.285, pp. 703-706,(1999).
12. A.J. Minnich, M. S. Dresselhaus, Z. F. Ren and G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects Energy Environmental Science, Vol.2, pp. 466-479,(2009)
13. M. Zhao,J. Zhang, N. Y. Gao, P. Song, M. Bosman, B. Peng, B. Q. Sun, Actively Tunable Visible Surface Plasmons in Bi2Te3 and their Energy-Harvesting Applications, Advanced Materials, Vol.28, pp.3138-3144,(2016).
14. X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu, and X. B. Zhang, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites, Applied Physics, Vol.86, pp.062111,(2005).

15. W. Xie, S. Wang, S. Zhu, J. He, T. M. Tritt and Q. Zhang, High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering, The Journal of Materials Science, Vol.10, pp.1007,(2012).
16. M. A. Baghchesaraa , R. Yousefib, M. Cheraghizadec, F. Jamali-Sheinid, A. Saáedic, M.R. Mahmmoudiane, A simple method to fabricate an NIR detector by PbTe nanowires in a large scale, Materials Research Bulletin, Vol.77, pp.131-137,(2016).
17. Q. Zhang, E. K. Chere, Y. M. Wang, H. S. Kim, R. He, F. Cao, K. Dahal, D. Broido, G. Chen, Z. Ren, High thermoelectric performance of n-type PbTe1ySy due to deep lying states induced by indium doping and spinodal decomposition, Nano Energy, Vol.22, pp.572-582,(2016).
18. X.Y. Yang, J.H. Wu, M. Gu, X.G. Xia, L.D. Chen, Fabrication and contact resistivity of W–Si3N4/TiB2–Si3N4/p–SiGe thermoelectric joints, Ceramics International, Vol.42, pp.8044-8050,(2016).
19. S. Bathula, M. Jayasimhadri, A. Dhar, Mechanical properties and microstructure of spark plasma sintered nanostructured p-type SiGe thermoelectric alloys, Materials and Design, Vol.87, pp.414-420,(2015).
20. C.J. Vineis , A. Shakouri , A. Majumdar , and M. G. Kanatzidis, “Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features”, Advanced Materials, Vol. 22, pp.3970–3980, (2010).
21. S H Yang, T J Zhu1, T Sun, JHe, S N Zhang1 and X B Zhao, Nanostructures in high-performance (GeTe)x(AgSbTe2)100−x thermoelectric materials, Journal of Materials Chemistry A, Vol. 19, pp.245707,(2008)
22. S.N. Guin, V. Srihari and K. Biswas, Promising thermoelectric performance in n-type AgBiSe2: effect of aliovalent anion doping, Journal of Materials Chemistry A, Vol. 3, pp.648–655,(2015)
23. D.S. Parker, A.F. May and D J. Singh, Benefits of Carrier-Pocket Anisotropy to Thermoelectric Performance: The Case of p-Type AgBiSe2, The American Physical Society, Vol. 3, pp.064003,(2015)
24. D. Li, X.Y. Qin, T.H. Zou, J. Zhang, B.J. Ren, C.J. Song, Y.F. Liu, L. Wang, H.X. Xin, J.C. Li, High thermoelectric properties for Sn-doped AgSbSe2, Journal of Alloys and Compoundsm, Vol.635 pp.87–91,(2015).
25. C. Xiao, J. Xu, B. Cao, K. Li, M. Kong, and Y. Xie, Solidsolutioned homojunction nanoplates with disordered lattice: A promising approach toward “phonon glass electron crystal” thermoelectric materials, Journal of the American Chemical Society, Vol.134, pp.7971,(2012).
26. C. Xiao, X. Qin, J. Zhang, R. An, J. Xu, K. Li, B. Cao, J.Yang, B.Ye, andY. Xie, High thermoelectric and reversible p-n-p conduction type switching integrated in dimetal chalcogenide, Journal of the American Chemical Society, Vol.134, pp.18460,(2012).
27. T. Sakakibara, Y. Takigawa, and K. Kurosawa, Hall mobility enhancement in AgBiTe2-Ag2Te composites, Journal of Applied Physics. Vol. 41, 2842,(2002)
28. S. N. Guin, D. S. Negi, R. Datta and K. Biswas, Nanostructuring, carrier engineering and bond anharmonicity synergistically boost the thermoelectric performance of p-type AgSbSe2–ZnSe, Journal of Materials Chemistry A, Vol.2, pp.4324–4331,(2014).
29. V. P. Zhuze, V. M. Sergeeva, and E. L. Shtrum, Semiconducting compounds with the general formula ABX2, Soviet Physics-Technical Physics, Vol.3, pp.1925, (1958).
30. V. A. Bazakutsa and M. P. Vasilieva, The dependence of the thermalconductivity of A1SbC26-type triple semiconductors on their chemical composition and structure, Journal of Engineering Physics, Vol.34, pp.137,(1978).
31. C. H. L. Goodman and R.W. Douglas, Ternary Diamond-Like Copper-Based Semiconductors for Thermoelectric Applications, Physica (Amsterdam), Vol.20, pp.1107,(1954).
32. J. H. Wernick and K. E. Benson, Constitution of the AgSbSe2-AgSbTe2 −AgBiSe2−AgBiTe2 system, Journal of Physics and Chemistry of Solids, Vol.3, pp.157,(1957).
33. K. Hoang, S. D. Mahanti, J. R. Salvador, and M. G. Kanatzidis, Atomic ordering and gap formation in Ag-Sb-based ternary chalcogenides, Physical Review Letters, Vol.99, pp. 156403,(2007).
34. E. F. Hockings, The thermal conductivity of silver antimony telluride, Journal of Physics and Chemistry of Solids, Vol.10, pp. 341,(1959).
35. L. D. Dudkin and A. L. Ostranitza, ternary semiconducting compounds coming under the general formula Ab2(vi), Doklady Akademii Nauk SSSR, Vol.124, pp.94 (1959).
36. W. Gasior, J. Pstrus, Z. Moser Z, K. Fitzner, and A. Krzyzak, Surface Tension and Thermodynamic Properties of Liquid Ag-Bi Solutions, The Journal of Phase Equilibria and Diffusion,Vol.24, pp.40-49,(2003).
37. I. Karakaya and W.T. Thompson, ASM Metals Handbook, Ag-Se (Silver -Selenium) phase diagram Vol 3, pp.266. (1990).
38. R.P. Elliott and F.A. Shunk, ASM Metals Handbook, Ag-Bi (Silver - Bismuth)
phase diagram Vol 3, pp.232,(1980).
39. H. Okamoto, The Bi-Se (Bismuth-Selenium) System, The Journal of Phase Equilibria and Diffusion, Vol.15, pp.195-201,(1994).
40. A.B. Gokhale and G.J. Abbaschian, Ge-Se (Germanium-Selenium) phase diagram ASM Metals Handbook,Vol.3, pp.966.(1990).
41. R.W. Olesinski and G.J. Abbaschian, Ag-Ge (Silver – Germanium) phase diagram, ASM Metals Handbook, Vol.3, pp.245,(1988).
42. R.Schmid-Fetze., Silver-Bismuth-Selenium Ternary Alloys, VCH, Vol.1, pp. 320-323,(1988).
43. Y.M. Shykhyev, Y.A. Yusibov, B.A. Popovkin, and M.B. Babanly, The Ag-Bi-Se System, Zhurnal Neorganicheskoi Khimii, Vol.48, pp.2100-2106,(2003).
44. Y.M. Shykhyev, Y.A. Yusibov, B.A. Popovkin, and M.B. Babanly, The Ag-Bi-Se System, Zhurnal Neorganicheskoi Khimii, Vol.48, pp. 2100-2106,(2003).
45. A. Prince, Silver-Germanium-Selenium, Ternary Alloys, Vol.2, pp. 195-210,(1988).
46. Z.Y. Salaeva, M.R. Allazov, and A.A. Movsum Zade, The Ag2Se-GeSe2 and Ag8GeSe6Ge Systems, Russian Journal of Inorganic Chemistry, Vol.30, pp. 1043-1045,(1985).
47. http://www.materialsnet.com.tw/DocView.aspx?id=8274
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code