Responsive image
博碩士論文 etd-0614116-122902 詳細資訊
Title page for etd-0614116-122902
論文名稱
Title
利用聚吡咯修飾之碳量子點檢測褪黑激素
Carbon dots modified with polypyrrole to detect melatonin
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-05
繳交日期
Date of Submission
2016-07-14
關鍵字
Keywords
消光、螢光色譜法、褪黑激素、聚吡咯、碳奈米粒子
Carbon dots, Polypyrrole, Quenching, Fluorescence, Melatonin
統計
Statistics
本論文已被瀏覽 5688 次,被下載 30
The thesis/dissertation has been browsed 5688 times, has been downloaded 30 times.
中文摘要
碳奈米粒子是一個非常新興的螢光奈米物質,它具有了許多的特點,像是:容易製備、水溶性佳、化學惰性、低毒性、容易進行表面修飾及抵抗光漂白的能力。因此,在具有這些優勢的特性下,碳量子點能夠應用在許多領域方面,如:光催化、放光裝置、化學感測、金屬離子探針、生化感應器、生物顯影甚至是藥物傳遞方面。
本研究利用聚吡咯修飾之碳奈米粒子(PPy-Cdots)檢測褪黑激素(melatonin):聚吡咯是一導電高分子,它具有了(1):生物相容性,可以使環境造成的干擾降低;(2)良好的訊號傳遞,不論是輸入/出訊號,都不易受到本身修飾的影響;(3):它也可保護結合的材料受到汙染或是干擾,進而影響分析結果。褪黑激素是一種在生物體中普遍存在的激素,它影響了我們人體內的生理時鐘、自然作息,它也具有抗癌及增加免疫的功能。近年來,褪黑激素已經應用在多種疾病治療上,如:失眠及憂鬱症,因此檢驗其在人體的含量是一重要課題。
因此,我們將所合成的碳奈米粒子修飾上聚吡咯高分子,不止使碳奈米粒子的放光能力增加,在與分析物褪黑激素結合時,也能避免其干擾。褪黑激素與所合成的聚吡咯修飾之碳奈米粒子有相似吸收範圍,因此當樣本接受光訊號時,部分的能量會由外在的褪黑激素吸收,使得樣本的放光衰弱,藉由此消光現象來進一步定量出分析物的濃度。
Abstract
Carbon dots is a very novel nanomaterial with fluorescence property. It has multiple characteristic, such as : easily and facile synthesis, good water solubility, chemistry inert, lower toxic, surface functionalize and resisting photobleaching. Therefore, with all the superioritys, carbon dots can apply in many research regions, like : photocatalysis, photoluminescence, chemosensors, metal ions probes, biosensors, bioimaging even in the drug delivery system.
This thesis is about using polypyrrole functionalize carbon dots(PPy-Cdots) to detect melatonin. Polypyrrole is a conducting polymer, it has three main properties to functionalize it to our synthesis carbon dots. The first one is good biocompatible property that reducing the error from the environment. The second is well signal transferring. No matter what importing or exporting signals, it will not easily influence by functionalize agent itself. The third it can protect carbon dots from polluting and let the analysis result inaccurate. Melatonin is a hormone that is general presence in organisms. It can affect our biological rhyme, natural rest. It also has functions of anticancer and increased immunity. Recently, melatonin is already applied in curing many kinds of diseases, for instance: insomnia and depression. As a result, detecting the quantity of melatonin in human body is an important subject.
As a consequence, we synthesis a polypyrrole functionalize catbon dots, not only make the luminescence increased but also preventing interference from possible resources. Melatonin has similar absorbance region with our sample, so partial energy will absorb by analytes when sample excited by laser cause quenching effect happened. Later, we use this phenomenon to quantify the amount.
目次 Table of Contents
目錄
第壹章:總體簡介(General introduction) 1
一、奈米科技的簡介(Introduction of nanotechnology) 1
二、碳奈米粒子簡介(Carbon nanoparticles or Carbon-dots,CDs) 2
三、碳奈米粒子放光特性(Photoluminescent of Carbon nanoparticles) 3
Ⅰ:共軛π軌域能帶躍遷 3
Ⅱ:表面缺陷所導致的放光 4
Ⅲ:可調式的放光 5
Ⅳ:上轉換的放光 6
四、碳奈米粒子的合成方式(Synthesis of carbon nanoparticles) 8
五、參考資料(References) 10
第貳章:材料簡介(Introduction of materials)........................................................13
一、分析物-褪黑激素(melatonin)...................................................................13
二、褪黑激素的偵測方法(Detection methods of melatonin)...........................17
三、修飾材料-聚吡咯(Polypyrrole)................................................................26
四、參考資料(References)................................................................................26
第參章:利用聚吡咯修飾之碳奈米粒子檢測褪黑激素(Carbon dots modified with polypyrrole to detect melatonin.) 28
一、偵測原理(Principle) 28
二、藥品、合成方法及實驗操作(Chemicals、synthesis and procedure of experiments) 28
藥品(Chemicals) 28
合成方法(Synthesis) 29
實驗操作(Procedure of experiments) 30
三、結果與討論(Result and discussion) 32
所合成奈米粒子的物理性質(Physical properties of nanoparticles) 32
利用螢光靈敏度偵測褪黑激素(Melatonin detection using fluorescence) 42
四、結論(Conclusion) 46
五、參考資料(References) 46
第肆章:論文總結(Thesis conclusion)..................................................................51
第伍章:附錄(Appendix)........................................................................................52
圖次
圖1.1:(A)具有強UV吸收但弱或無放光特性的碳奈米粒子,(B)弱UV吸收但具有多色可見光放光特性的碳奈米粒子。 4
圖1.2:(A)PEG1500CDs水溶液在(a)400 nm激發光以濾鏡濾至特定波長激發光及(b)特定波長激發光下的放光圖(B)以PPEI-EI修飾的CDs的吸收及放射光譜圖,激發光以400 nm起(左)以20 nm增量來調節激發光波長。內置圖為放光強度以該CDs的量子產率歸一化後的螢光強度圖。 5
圖1.3:(A)CDs的上轉換放光光譜,激發光以700 nm起(左)以25 nm增量來調節激發光波長。Inset為規一化的放光圖。(B)另一CDs的上轉換放光光譜,激發光從805nm到1035nm。(C)CDs水溶液以800nm的雷射激發的照片。(D)400nm及800nm波長的激發光強度與放光強度的關係圖。 7
圖1.4:碳奈米粒子的合成方式及其後續修飾改質示意圖。 8
圖1.5:利用雷射剝蝕法之碳奈米粒子的一步合成,使用PEG200N溶劑及石墨。 9
圖1.6:利用改質的二氧化矽球體當作基底,苯酚甲醛樹脂作為碳的前驅物的碳奈米粒子合成。 10
圖2.1:褪黑激素在人腦中松果體分泌機制。 13
圖2.2:褪黑激素的功用示意表。 14
圖2.3:人體中合成褪黑激素的路徑表。 15
圖2.4:褪黑激素的歷史時間軸。 16
圖2.5:Total Ion Current圖(TIC圖) 18
圖2.6:(左)褪黑激素濃度與訊號面積的校整曲線,(右)校整曲線的數據表格。 18
圖2.7:褪黑激素與反應後的三種代謝物,(A)褪黑激素MEL,(B)AFMK,(C)AMK,(D)3COHM。 19
圖2.8:褪黑激素與反應後的三種代謝物的(A)吸收色譜圖(B)以210, 231, 279 及380nm激發波長的層析光譜圖。 20
圖2.9:四種分析物:MEL, AFMK, AMK, 5-MT 及3COHM.的HPLC層析圖。 20
圖2.10:褪黑激素及多巴胺在Gr–Fe3O4/GCE電極表面的氧化機制。 22
圖2.11:相似分析物(a)檸檬酸(AA)(b)尿素(UA)的選擇性區分。 22
圖2.12: Gr–Fe3O4/GCE電極對分析物的定量測試(a)定量的多巴胺及變量的褪黑激素,(b)定量的褪黑激素及變量的多巴胺,(c)變量的褪黑激素及多巴胺,(d)c圖的分析物電訊號及濃度檢量線。 23
圖2.13:ELISA實驗流程圖。 24
圖2.14:0.125 μg/mL 至1 μg/mL的褪黑激素抗體吸收曲線。 24
圖2.15:七種褪黑激素的類似物的吸收曲線。 25
圖3.1:利用聚吡咯修飾之碳奈米粒子檢測褪黑激素的原理示意圖。 28
圖3.2:碳奈米粒子(Cdots)合成步驟流程示意圖。 29
圖3.3:聚吡咯(PPy)合成步驟流程及反應原理示意圖。 29
圖3.4:聚吡咯修飾之碳奈米粒子(PPy-Cdots)合成步驟流程示意圖。 30
圖3.5:所合成化合物的紫外光吸收光譜圖。聚吡咯(PPy)、碳奈米粒子(Cdots)、聚吡咯修飾之碳奈米粒子(PPy-Cdots)及褪黑激素(Melatonin)。 33
圖3.6:以不同激發光波長激發(a)碳奈米粒子,(b)聚吡咯修飾的碳奈米粒子之放光光譜圖 35
圖3.7:穿隧式電子顯微鏡及粒子直徑大小分布圖(a)碳奈米粒子,(b)修飾聚吡咯之碳奈米粒子,(c)聚吡咯。 37
圖3.8:所合成化合物的傅立葉轉換紅外線光譜圖,聚吡咯PPy(下),碳奈米粒子Cdots(中),修飾聚吡咯之碳奈米粒子PPy-Cdots(上)。 39
圖3.9:(a)碳奈米粒子及修飾聚吡咯之碳奈米粒子的pH值關係圖,(b)修飾聚吡咯之碳奈米粒子的鹽類穩定性,(c)修飾聚吡咯之碳奈米粒子及結合褪黑激素的複合物(PPy-Cdots-melatonin)之pH值關係圖,(d)PPy-Cdots-melatonin 在pH值6.0~8.0的相對變化圖。 41
圖3.10:修飾聚吡咯之碳奈米粒子在有無褪黑激素存在下的放光特性,將200µL聚吡咯修飾之碳奈米粒子原始溶液,添加至2.8mL的500nM褪黑激素溶液中,以波長360nm的激發光激發樣本,偵測其添加前後放光值的變化。 42
圖3.11:(a)修飾聚吡咯之碳奈米粒子在pH值7.0環境下,對不同濃度的褪黑激素下的螢光靈敏度及(b)以褪黑激素的濃度對上相對放光值的校整曲線關係圖。 43
圖3.12:修飾聚吡咯之碳奈米粒子對於褪黑激素的選擇性測試,分析物濃度為200nM,在pH值7.0的環境下,使用波長360nm的激發光偵測其放光強度。 44
圖3.13:(a)再添加血漿到修飾聚吡咯之碳奈米粒子在pH值為7.0下,對不同濃度的褪黑激素的螢光靈敏度及(b)以褪黑激素的濃度對上相對放光值的校整曲線關係圖。 45
表次
表2.1:HPLC及MEKC方法的多種參數及偵測極限。........................................21
表2.2:使用HPLC及MECK方法偵測5μg/mL的分析物之實際偵測量。.........21
表3.1:本篇研究方法與之前文獻研究比較表。................................ .... .................46
參考文獻 References
第壹章
1. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B 2003, 107 (3), 668-677.
2. Nel, A.; Xia, T.; Mädler, L.; Li, N., Toxic potential of materials at the nanolevel. science 2006, 311 (5761), 622-627.
3. Daniel, M.-C.; Astruc, D., Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews 2004, 104 (1), 293-346.
4. Bisen, D.; Sharma, R.; Brahme, N.; Tamrakar, R., Effect of temperature on the synthesis of CdS: Mn doped nanoparticles. Chalcogenide Letters 2009, 6 (9), 427-431.
5. Lim, S. Y.; Shen, W.; Gao, Z., Carbon quantum dots and their applications. Chemical Society Reviews 2015, 44 (1), 362-381.
6. Xu, X.; Ray, R.; Gu, Y.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society 2004, 126 (40), 12736-12737.
7. Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H., Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society 2006, 128 (24), 7756-7757.
8. Wang, Y.; Hu, A., Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C 2014, 2 (34), 6921-6939.
9. Demchenko, A. P.; Dekaliuk, M. O., Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods and Applications in Fluorescence 2013, 1 (4), 042001.
10. Wen, X.; Yu, P.; Toh, Y.-R.; Ma, X.; Tang, J., On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chemical Communications 2014, 50 (36), 4703-4706.
11. Zong, J.; Zhu, Y.; Yang, X.; Shen, J.; Li, C., Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chemical Communications 2011, 47 (2), 764-766.
12. Jia, X.; Li, J.; Wang, E., One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 2012, 4 (18), 5572-5575.
13. Hu, S.-L.; Niu, K.-Y.; Sun, J.; Yang, J.; Zhao, N.-Q.; Du, X.-W., One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. Journal of Materials Chemistry 2009, 19 (4), 484-488.
14. Zhu, B.; Sun, S.; Wang, Y.; Deng, S.; Qian, G.; Wang, M.; Hu, A., Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. Journal of Materials Chemistry C 2013, 1 (3), 580-586.
15. Liu, R.; Wu, D.; Liu, S.; Koynov, K.; Knoll, W.; Li, Q., An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angewandte Chemie 2009, 121 (25), 4668-4671.

第貳章

1. Konturek, S.; Konturek, P.; Brzozowski, T.; Bubenik, G., Role of melatonin in upper gastrointestinal tract. Journal of physiology and pharmacology 2007, 58 (6), 23-52.
2. Hardeland, R.; Cardinali, D. P.; Srinivasan, V.; Spence, D. W.; Brown, G. M.; Pandi-Perumal, S. R., Melatonin—A pleiotropic, orchestrating regulator molecule. Progress in neurobiology 2011, 93 (3), 350-384.
3. http://stary.lf2.cuni.cz/
4. http://www.wikiwand.com/en/Melatonin_receptor_agonist
5. Aboul-Enein, H. Y.; Doneanu, C.; Covaci, A., Capillary gc–ms determination of melatonin in several pharmaceutical tablet formulations. Biomedical Chromatography 1999, 13 (1), 24-26.
6. Hevia, D.; Botas, C.; Sainz, R.; Quiros, I.; Blanco, D.; Tan, D.-X.; Gomez-Cordoves, C.; Mayo, J., Development and validation of new methods for the determination of melatonin and its oxidative metabolites by high performance liquid chromatography and capillary electrophoresis, using multivariate optimization. Journal of chromatography A 2010, 1217 (8), 1368-1374.
7. Bagheri, H.; Afkhami, A.; Hashemi, P.; Ghanei, M., Simultaneous and sensitive determination of melatonin and dopamine with Fe 3 O 4 nanoparticle-decorated reduced graphene oxide modified electrode. RSC Advances 2015, 5 (28), 21659-21669.
8. Li, Y.; Cassone, V. M., A simple, specific high-throughput enzyme-linked immunosorbent assay (ELISA) for quantitative determination of melatonin in cell culture medium. International immunopharmacology 2015, 28 (1), 230-234.
9. Ateh, D.; Navsaria, H.; Vadgama, P., Polypyrrole-based conducting polymers and interactions with biological tissues. Journal of the royal society interface 2006, 3 (11), 741-752.
10. Ramanaviciene, A.; Ramanavicius, A., Application of polypyrrole for the creation of immunosensors. Critical Reviews in Analytical Chemistry 2002, 32 (3), 245-252.
11 Saville, P. Polypyrrole Formation and use. Defence R&D Canada-Atlantic; Technical memorandum DRDC Atlantic TM 2005-004 January: 2005.

第參章

1. Cardinali, D.; Rosner, J., Metabolism of serotonin by the rat retina in vitro. Journal of neurochemistry 1971, 18 (9), 1769-1770.
2. Tosini, G.; Menaker, M., The clock in the mouse retina: melatonin synthesis and photoreceptor degeneration. Brain research 1998, 789 (2), 221-228.
3. Liu, C.; Fukuhara, C.; Wessel III, J. H.; Iuvone, P. M.; Tosini, G., Localization of Aa-nat mRNA in the rat retina by fluorescence in situ hybridization and laser capture microdissection. Cell and tissue research 2004, 315 (2), 197-201.
4. Conti, A.; Conconi, S.; Hertens, E.; Skwarlo‐Sonta, K.; Markowska, M.; Maestroni, G. J., Evidence for melatonin synthesis in mouse and human bone marrow cells. Journal of pineal research 2000, 28 (4), 193-202.
5. Champier, J.; Claustrat, B.; Besançon, R.; Eymin, C.; Killer, C.; Jouvet, A.; Chamba, G.; Fèvre-Montange, M., Evidence for tryptophan hydroxylase and hydroxy-indol-O-methyl-transferase mRNAs in human blood platelets. Life sciences 1997, 60 (24), 2191-2197.
6. Bubenik, G. A., Review: gastrointestinal melatonin: localization, function, and clinical relevance. Digestive diseases and sciences 2002, 47 (10), 2336-2348.
7. Semak, I.; Zbytek, B.; Slominski, R. M.; Tobin, D. J., On the Role of Melatonin in Skin Physiology and Pathology.
8. Carrillo-Vico, A.; Calvo, J. R.; Abreu, P.; Lardone, P. J.; GARCÍA, S.; Reiter, R. J.; Guerrero, J. M., Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. The FASEB Journal 2004, 18 (3), 537-539.
9. Dubocovich, M. L.; Markowska, M., Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 2005, 27 (2), 101-110.
10. Pandi-Perumal, S. R.; Trakht, I.; Srinivasan, V.; Spence, D. W.; Maestroni, G. J.; Zisapel, N.; Cardinali, D. P., Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Progress in neurobiology 2008, 85 (3), 335-353.
11. Reiter, R. J.; Tan, D.-X.; Manchester, L. C.; Paredes, S. D.; Mayo, J. C.; Sainz, R. M., Melatonin and reproduction revisited. Biology of reproduction 2009, 81 (3), 445-456.
12. Lewy, A. J.; Emens, J.; Jackman, A.; Yuhas, K., Circadian uses of melatonin in humans. Chronobiology international 2006, 23 (1-2), 403-412.
13. Arendt, J., Melatonin and human rhythms. Chronobiology international 2006, 23 (1-2), 21-37.
14. Carrillo-Vico, A.; Reiter, R. J.; Lardone, P. J.; Herrera, J. L.; Fernández-Montesinos, R.; Guerrero, J. M.; Pozo, D., The modulatory role of melatonin on immune responsiveness. Current Opinion in Investigational Drugs 2006, 7 (5), 423.
15. Reiter, R.; Tan, D.; Manchester, L.; Tamura, H., MELATONIN DEFEATS NEURALLY-DERIVED FREE RADICALS. Journal of Physiology and Pharmacology 2007, 58 (6), 5-22.
16. Reiter, R. J.; Paredes, S. D.; Manchester, L. C.; Tan, D.-X., Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Critical Reviews in Biochemistry and Molecular Biology 2009, 44 (4), 175-200.
17. Almeida, E. A.; Martinez, G. R.; Klitzke, C. F.; Medeiros, M. H.; Mascio, P. D., Oxidation of melatonin by singlet molecular oxygen (O2 (1Δg)) produces N1‐acetyl‐N2‐formyl‐5‐methoxykynurenine. Journal of pineal research 2003, 35 (2), 131-137.
18. Hardeland, R.; Tan, D. X.; Reiter, R. J., Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. Journal of pineal research 2009, 47 (2), 109-126.
19. Tan, D. X.; Manchester, L. C.; Terron, M. P.; Flores, L. J.; Reiter, R. J., One molecule, many derivatives: A never‐ending interaction of melatonin with reactive oxygen and nitrogen species? Journal of pineal research 2007, 42 (1), 28-42.
20. Tan, D. X.; Hardeland, R.; Manchester, L. C.; Paredes, S. D.; Korkmaz, A.; Sainz, R. M.; Mayo, J. C.; Fuentes‐Broto, L.; Reiter, R. J., The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biological Reviews 2010, 85 (3), 607-623.
21. Tomás‐Zapico, C.; Coto‐Montes, A., A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. Journal of pineal research 2005, 39 (2), 99-104.
22. Zhu, L.; Cui, X.; Wu, J.; Wang, Z.; Wang, P.; Hou, Y.; Yang, M., Fluorescence immunoassay based on carbon dots as labels for the detection of human immunoglobulin G. Analytical Methods 2014, 6 (12), 4430-4436.
23. Bottari, G.; de la Torre, G.; Guldi, D. M.; Torres, T., Covalent and noncovalent phthalocyanine− carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chemical reviews 2010, 110 (11), 6768-6816.
24. Xu, H.; Yang, X.; Li, G.; Zhao, C.; Liao, X., Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. Journal of agricultural and food chemistry 2015, 63 (30), 6707-6714.
25. Gedda, G.; Pandey, S.; Bhaisare, M. L.; Wu, H.-F., Carbon dots as nanoantennas for anti-inflammatory drug analysis using surface-assisted laser desorption/ionization time-of-flight mass spectrometry in serum. RSC Advances 2014, 4 (72), 38027-38033.
26. Khan, M. S.; Bhaisare, M. L.; Pandey, S.; Talib, A.; Wu, S.-M.; Kailasa, S. K.; Wu, H.-F., Exploring the ability of water soluble carbon dots as matrix for detecting neurological disorders using MALDI-TOF MS. International Journal of Mass Spectrometry 2015, 393, 25-33.
27. Kumar, A. M.; Suresh, B.; Ramakrishna, S.; Kim, K.-S., Biocompatible responsive polypyrrole/GO nanocomposite coatings for biomedical applications. RSC Advances 2015, 5 (121), 99866-99874.
28. Pandey, S.; Thakur, M.; Mewada, A.; Anjarlekar, D.; Mishra, N.; Sharon, M., Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. Journal of Materials Chemistry B 2013, 1 (38), 4972-4982.
29. Yang, S.-T.; Wang, X.; Wang, H.; Lu, F.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J.-H.; Liu, Y.; Chen, M., Carbon dots as nontoxic and high-performance fluorescence imaging agents. The Journal of Physical Chemistry C 2009, 113 (42), 18110-18114.
30. Dong, Y.; Pang, H.; Yang, H. B.; Guo, C.; Shao, J.; Chi, Y.; Li, C. M.; Yu, T., Carbon‐Based Dots Co‐doped with Nitrogen and Sulfur for High Quantum Yield and Excitation‐Independent Emission. Angewandte Chemie International Edition 2013, 52 (30), 7800-7804.
31. Routh, P.; Das, S.; Shit, A.; Bairi, P.; Das, P.; Nandi, A. K., Graphene quantum dots from a facile sono-fenton reaction and its hybrid with a polythiophene graft copolymer toward photovoltaic application. ACS applied materials & interfaces 2013, 5 (23), 12672-12680.
32. Li, X.; Rui, M.; Song, J.; Shen, Z.; Zeng, H., Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Advanced Functional Materials 2015, 25 (31), 4929-4947.
33. Sugden, D.; Chong, N. W.; Lewis, D. F., Structural requirements at the melatonin receptor. British journal of pharmacology 1995, 114 (3), 618-623.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code