Responsive image
博碩士論文 etd-0614116-124055 詳細資訊
Title page for etd-0614116-124055
論文名稱
Title
利用磁性奈米粒子結合MALDI質譜進行專一性偵測汞離子
Magnetic nanoparticles combined with MALDI MS for specific detecting Hg
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-05
繳交日期
Date of Submission
2016-07-14
關鍵字
Keywords
快速分離、胸腺嘧啶、磁性奈米粒子、汞、基質輔助雷射脫附游離質譜法
selective, magnetic nanoparticles, thymine, separation, Mercury
統計
Statistics
本論文已被瀏覽 5642 次,被下載 35
The thesis/dissertation has been browsed 5642 times, has been downloaded 35 times.
中文摘要
汞是一種劇毒的元素,破壞中樞神經系統,對口、粘膜和牙齒有不良影響,於水中無色無味,非常難以察覺,而其化合物被廣泛應用於工業產品中,因此對於水質汙染機會就更高了,所以希望能發展出一個能做到快速靈敏的檢驗方法,在此使用磁性奈米粒子進行檢測,藉由強磁性可以做到一個快速分離,可以搭配質譜儀來做到快速檢驗的功能,而本次實驗所合成出的磁性奈米粒子具有良好的專一性,而且能於真實樣品中測得0.1fmole的汞離子濃度,對於每次實驗所需的測量時間不需超過五分鐘,也不需加入太多基質或是做其他前處理,就可以在如海水等基質複雜中樣品做檢驗。本次實驗利用磁性奈米粒子來做為SALDI(Surface-assisted laser desorption/ionization表面輔助雷射脫附游離法)來對於汞離子進行偵測,將磁性奈米粒子搭配MALD-MSI來進行對於汞離子的偵測,利用磁性奈米物質可以做到快速分離再進入到MALDI-MS進行偵測,以檢測環境中的水質汙染程度,因此用Thymine@Chitosan@Fe3O4這個磁性奈米粒子對於Hg有良好的結合性以進行分離,再使用MALDI-MS進行檢驗,因為使用此材料來做為SALDI-MS基質,藉由Thymine與Hg有良好的鍵結力,再利用磁場做分離進行檢測,開發一個快速且靈敏的分析方法,可以有效對於Hg來進行環境分析。
Abstract
Mercury is a highly toxic element and it will cause damage to the central nervous system. Because it is colorless and tasteless in water, so it is hard to detect. It’s compounds which are widely used in industrial products that enhances the opportunity of water pollution. The reported methods are hard to make the method fast and selective. We use thymine modified chitosan magnetic nanoparticles(TCTS) combined with LDI-MS(laser desorption/ionization Mass Spectrometry) as SALDI-MS(Surface-assisted laser desorption/ionization Mass Spectrometry) to show good specificity and sensitivity to the Hg2+ ions. Because Thymine and Hg can easy get binding, so we use TCTS serves as a probe to detect Hg2+ ions. We use magnetic field to separate and then use LDI-MS to test the sample. We can measure Hg2+ ions(0.1ppb) in environmental samples such as tap and sea water in a very short time < 5 min. TCTS combined with LDI-MS offers a sensitive and selective method that can provide simple, inexpensive, fast test of Hg2+ ions in water.
目次 Table of Contents
第一章.簡介 1
1.1奈米科技 1
1.1.1發展歷史 1
1.1.2特性 2
1.1.3 合成 3
1.2磁性奈米粒子 4
1.2.1特性 4
1.2.2 應用 5
1.3 Thymine 7
1.3. MALDI 8
1.3.1歷史 8
1.3.2 原理 9
1.4汞 10
1.4.1汞中毒 10
1.4.2檢驗 11
1.5 研究目標 12
參考資料 13
第二章、使用胸線嘧啶修飾過的磁性奈米粒子對於溶液中汞離子進行專一性結合感測 17
1.前言 18
2.介紹 19
3.實驗與步驟 20
1.藥品 20
2.儀器 21
3.TCTS奈米粒子的合成 21
4.選擇性的探討 22
5.靈敏度的探討 22
6.真實樣品的分析 22
4.結果與討論 23
1.材料的鑑定 23
2.靈敏度和選擇性 28
3.真實樣品分析 39
總結 45
參考文獻 47
參考文獻 References
1. Granqvist, C.; Buhrman, R.; Wyns, J.; Sievers, A., Far-infrared absorption in ultrafine Al particles. Physical Review Letters 1976, 37 (10), 625.
2. Hayashi, C.; Uyeda, R.; Tasaki, A., Ultra-fine particles: exploratory science and technology. William Andrew Publishing: 1997.
3. Binnig, G.; Rohrer, H., Scanning tunneling microscopy. IBM Journal of research and development 2000, 44 (1/2), 279.
4. Kiss, L.; Söderlund, J.; Niklasson, G.; Granqvist, C., New approach to the origin of lognormal size distributions of nanoparticles. Nanotechnology 1999, 10 (1), 25.
5. Razavy, M., Quantum theory of tunneling. World Scientific: 2003; Vol. 1222445599.
6. Taylor, R.; Coulombe, S.; Otanicar, T.; Phelan, P.; Gunawan, A.; Lv, W.; Rosengarten, G.; Prasher, R.; Tyagi, H., Small particles, big impacts: a review of the diverse applications of nanofluids. Journal of Applied Physics 2013, 113 (1), 011301.
7. Hou, Y.; Gao, S., Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties. Journal of Materials Chemistry 2003, 13 (7), 1510-1512.
8. Polshettiwar, V.; Baruwati, B.; Varma, R. S., Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol. Green Chemistry 2009, 11 (1), 127-131.
9. Jiang, Z.; Xie, J.; Jiang, D.; Wei, X.; Chen, M., Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction. CrystEngComm 2013, 15 (3), 560-569.
10. Grass, R. N.; Athanassiou, E. K.; Stark, W. J., Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angewandte Chemie International Edition 2007, 46 (26), 4909-4912.
11. Buzea, C.; Pacheco, I. I.; Robbie, K., Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007, 2 (4), MR17-MR71.
12. Tadic, M.; Kralj, S.; Jagodic, M.; Hanzel, D.; Makovec, D., Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment. Applied Surface Science 2014, 322, 255-264.
13. Lu, A. H.; Salabas, E. e. L.; Schüth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition 2007, 46 (8), 1222-1244.
14. Gleich, B.; Weizenecker, J., Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005, 435 (7046), 1214-1217.
15. Gupta, A. K.; Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26 (18), 3995-4021.
16. Wu, W.; He, Q.; Jiang, C., Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. ChemInform 2009, 40 (24), i.
17. Lu, A. H.; Schmidt, W.; Matoussevitch, N.; Bönnemann, H.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schüth, F., Nanoengineering of a magnetically separable hydrogenation catalyst. Angewandte Chemie 2004, 116 (33), 4403-4406.
18. Sun, C.; Lee, J. S.; Zhang, M., Magnetic nanoparticles in MR imaging and drug delivery. Advanced drug delivery reviews 2008, 60 (11), 1252-1265.
19. McCarthy, J. R.; Weissleder, R., Multifunctional magnetic nanoparticles for targeted imaging and therapy. Advanced drug delivery reviews 2008, 60 (11), 1241-1251.
20. Reddy, D. H. K.; Lee, S.-M., Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Advances in colloid and interface science 2013, 201, 68-93.
21. Liu, G.; Li, Z.; Zhu, J.; Liu, Y.; Zhou, Y.; He, J., Studies on the thymine–mercury–thymine base pairing in parallel and anti-parallel DNA duplexes. New Journal of Chemistry 2015, 39 (11), 8752-8762.
22. Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T., MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. Journal of the American Chemical Society 2006, 128 (7), 2172-2173.
23. Miyachi, H.; Matsui, T.; Shigeta, Y.; Hirao, K., Effects of mercury (II) on structural properties, electronic structure and UV absorption spectra of a duplex containing thymine–mercury (II)–thymine nucleobase pairs. Physical Chemistry Chemical Physics 2010, 12 (4), 909-917.
24. Yamaguchi, H.; Šebera, J.; Kondo, J.; Oda, S.; Komuro, T.; Kawamura, T.; Dairaku, T.; Kondo, Y.; Okamoto, I.; Ono, A., The structure of metallo-DNA with consecutive thymine–HgII–thymine base pairs explains positive entropy for the metallo base pair formation. Nucleic acids research 2014, 42 (6), 4094-4099
25. Wang, Z.; Lee, J. H.; Lu, Y., Highly sensitive “turn-on” fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chemical Communications 2008, (45), 6005-6007.
26. Xue, X.; Wang, F.; Liu, X., One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. Journal of the American Chemical Society 2008, 130 (11), 3244-3245.
27. Hu, B.; Hu, L.-L.; Chen, M.-L.; Wang, J.-H., A FRET ratiometric fluorescence sensing system for mercury detection and intracellular colorimetric imaging in live Hela cells. Biosensors and Bioelectronics 2013, 49, 499-505.
28. Dave, N.; Chan, M. Y.; Huang, P.-J. J.; Smith, B. D.; Liu, J., Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury (II) detection and removal in water. Journal of the American Chemical Society 2010, 132 (36), 12668-12673.
29. Wu, D.; Zhang, Q.; Chu, X.; Wang, H.; Shen, G.; Yu, R., Ultrasensitive electrochemical sensor for mercury (II) based on target-induced structure-switching DNA. Biosensors and Bioelectronics 2010, 25 (5), 1025-1031.
30. Beavis, R. C.; Chait, B. T.; Standing, K., Matrix‐assisted laser‐desorption mass spectrometry using 355 nm radiation. Rapid Communications in Mass Spectrometry 1989, 3 (12), 436-439.
31. Dattelbaum, A. M.; Iyer, S., Surface-assisted laser desorption/ionization mass spectrometry. Expert review of proteomics 2006, 3 (1), 153-161.
32. Han, M.; Sunner, J., An activated carbon substrate surface for laser desorption mass spectrometry. Journal of the American Society for Mass Spectrometry 2000, 11 (7), 644-649.
33. Karas, M.; Bachmann, D.; Bahr, U. e.; Hillenkamp, F., Matrix-assisted ultraviolet laser desorption of non-volatile compounds. International journal of mass spectrometry and ion processes 1987, 78, 53-68.
34. Karas, M.; Bachmann, D.; Hillenkamp, F., Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical Chemistry 1985, 57 (14), 2935-2939.
35. Karas, M.; Bahr, U., Laser desorption ionization mass spectrometry of large biomolecules. TrAC Trends in Analytical Chemistry 1990, 9 (10), 321-325.
36. Law, K.; Larkin, J. R., Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Analytical and bioanalytical chemistry 2011, 399 (8), 2597-2622.
37. Lee, H.; Lee, E.; Kim, D. K.; Jang, N. K.; Jeong, Y. Y.; Jon, S., Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. Journal of the American Chemical Society 2006, 128 (22), 7383-7389.
38. Lo, C.-Y.; Lin, J.-Y.; Chen, W.-Y.; Chen, C.-T.; Chen, Y.-C., Surface-assisted laser desorption/ionization mass spectrometry on titania nanotube arrays. Journal of the American Society for Mass Spectrometry 2008, 19 (7), 1014-1020.
39. Park, J.-I.; Cheon, J., Synthesis of “solid solution” and “core-shell” type cobalt-platinum magnetic nanoparticles via transmetalation reactions. Journal of the American Chemical Society 2001, 123 (24), 5743-5746.
40. Shi, J.; Chan, C.; Pang, Y.; Ye, W.; Tian, F.; Lyu, J.; Zhang, Y.; Yang, M., A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosensors and Bioelectronics 2015, 67, 595-600.
41. Sunner, J.; Dratz, E.; Chen, Y.-C., Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Analytical chemistry 1995, 67 (23), 4335-4342.
42. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T., Protein and polymer analyses up to m/z 100 000 by laser ionization time‐of‐flight mass spectrometry. Rapid communications in mass spectrometry 1988, 2 (8), 151-153.
43. Watanabe, T.; Kawasaki, H.; Yonezawa, T.; Arakawa, R., Surface‐assisted laser desorption/ionization mass spectrometry (SALDI‐MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles. Journal of mass spectrometry 2008, 43 (8), 1063-1071.
44. Jung, J. H.; Lee, J. H.; Shinkai, S., Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. Chemical Society Reviews 2011, 40 (9), 4464-4474.
45. Cui, L.; Guo, X.; Wei, Q.; Wang, Y.; Gao, L.; Yan, L.; Yan, T.; Du, B., Removal of mercury and methylene blue from aqueous solution by xanthate functionalized magnetic graphene oxide: sorption kinetic and uptake mechanism. Journal of colloid and interface science 2015, 439, 112-120.
46. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T., Protein and polymer analyses up to m/z 100 000 by laser ionization time‐of‐flight mass spectrometry. Rapid communications in mass spectrometry 1988, 2 (8), 151-153.
47. Cotter, R. J., Time-of-flight mass spectrometry: instrumentation and applications in biological research. Amer Chemical Society: 1997.
48. Sunner, J.; Dratz, E.; Chen, Y.-C., Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Analytical chemistry 1995, 67 (23), 4335-4342.
49. Dattelbaum, A. M.; Iyer, S., Surface-assisted laser desorption/ionization mass spectrometry. Expert review of proteomics 2006, 3 (1), 153-161.
50. Han, M.; Sunner, J., An activated carbon substrate surface for laser desorption mass spectrometry. Journal of the American Society for Mass Spectrometry 2000, 11 (7), 644-649.
51. Law, K.; Larkin, J. R., Recent advances in SALDI-MS techniques and their chemical and bioanalytical applications. Analytical and bioanalytical chemistry 2011, 399 (8), 2597-2622.
52. Guinan, T.; Kirkbride, P.; Pigou, P. E.; Ronci, M.; Kobus, H.; Voelcker, N. H., Surface‐assisted laser desorption ionization mass spectrometry techniques for application in forensics. Mass spectrometry reviews 2015, 34 (6), 627-640.
53. Pihlainen, K.; Grigoras, K.; Franssila, S.; Ketola, R.; Kotiaho, T.; Kostiainen, R., Analysis of amphetamines and fentanyls by atmospheric pressure desorption/ionization on silicon mass spectrometry and matrix‐assisted laser desorption/ionization mass spectrometry and its application to forensic analysis of drug seizures. Journal of mass spectrometry 2005, 40 (4), 539-545.
54. http://article.sapub.org/10.5923.j.nn.20130303.06.html
55. https://en.wikipedia.org/wiki/Mercury_(element)
57. https://zh.wikipedia.org/wiki/汞
(1) Guallar, E.; Sanz-Gallardo, M. I.; van’t Veer, P.; Bode, P.; Aro, A.; Gómez-Aracena, J.; Kark, J. D.; Riemersma, R. A.; Martín-Moreno, J. M.; Kok, F. J. N. Engl. J. Med.2002, 347 (22), 1747–1754.
(2) Harris, H. H.; Pickering, I. J.; George, G. N. Science2003, 301 (5637), 1203.
(3) Pacyna, E. G.; Pacyna, J. M.; Sundseth, K.; Munthe, J.; Kindbom, K.; Wilson, S.; Steenhuisen, F.; Maxson, P. Atmos. Environ.2010, 44 (20), 2487–2499.
(4) Lamborg, C. H.; Hammerschmidt, C. R.; Bowman, K. L.; Swarr, G. J.; Munson, K. M.; Ohnemus, D. C.; Lam, P. J.; Heimbürger, L.-E.; Rijkenberg, M. J. A.; Saito, M. A. Nature2014, 512 (7512), 65–68.
(5) UNEP (United Nations Environment Programme). Mercury_Time To Act http://www.unep.org/PDF/PressReleases/Mercury_TimeToAct.pdf (accessed Mar 6, 2016).
(6) Legrand, M.; Passos, C. J. S.; Mergler, D.; Chan, H. M. Environ. Sci. Technol.2005, 39 (12), 4594–4598.
(7) Ammann, A. A. J. Mass Spectrom.2007, 42 (4), 419–427.
(8) de Quadros, D. P. C.; Campanella, B.; Onor, M.; Bramanti, E.; Borges, D. L. G.; D’Ulivo, A. Spectrochim. Acta Part B At. Spectrosc.2014, 101, 312–319.
(9) Kumari, N.; Dey, N.; Bhattacharya, S. Analyst2014, 139 (10), 2370–2378.
(10) Abdelhamid, H. N.; Wu, H.-F. Microchim. Acta2015, 182 (9-10), 1609–1617.
(11) Cui, X.; Zhu, L.; Wu, J.; Hou, Y.; Wang, P.; Wang, Z.; Yang, M. Biosens. Bioelectron.2015, 63, 506–512.
(12) Wei, Q.; Nagi, R.; Sadeghi, K.; Feng, S.; Yan, E.; Ki, S. J.; Caire, R.; Tseng, D.; Ozcan, A. ACS Nano2014, 8 (2), 1121–1129.
(13) Liu, X.; Wu, Z.; Zhang, Q.; Zhao, W.; Zong, C.; Gai, H. Anal. Chem.2016, 88 (4), 2119–2124.
(14) Liu, M.; Wang, Z.; Zong, S.; Chen, H.; Zhu, D.; Wu, L.; Hu, G.; Cui, Y. ACS Appl. Mater. Interfaces2014, 6 (10), 7371–7379.
(15) Guerrini, L.; Rodriguez-Loureiro, I.; Correa-Duarte, M. A.; Lee, Y. H.; Ling, X. Y.; García de Abajo, F. J.; Alvarez-Puebla, R. A. Nanoscale2014, 6 (14), 8368–8375.
(16) Abdelhamid, H. N.; Wu, H.-F. J. Am. Soc. Mass Spectrom.2014, 25 (5), 861–868.
(17) Cui, L.; Guo, X.; Wei, Q.; Wang, Y.; Gao, L.; Yan, L.; Yan, T.; Du, B. J. Colloid Interface Sci.2015, 439, 112–120.
(18) Jung, J. H.; Lee, J. H.; Shinkai, S. Chem. Soc. Rev.2011, 40 (9), 4464–4474.
(19) Reddy, D. H. K.; Lee, S.-M. Adv. Colloid Interface Sci.2013, 201-202, 68–93.
(20) Abdelhamid, H. N.; Wu, H.-F. J. Mater. Chem. B2013, 1 (32), 3950–3961.
(21) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc.1958, 80 (6), 1339–1339.
(22) Abdelhamid, H. N.; Wu, H.-F. Anal. Chim. Acta2012, 751, 94–104.
(23) Abdelhamid, H. N.; Khan, M. S.; Wu, H.-F. RSC Adv.2014, 4 (91), 50035–50046.
(24) Abdelhamid, H. N.; Wu, B.-S.; Wu, H.-F. Talanta2014, 126, 27–37.
(25) Li, G.; Jiang, Y.; Huang, K.; Ding, P.; Chen, J. J. Alloys Compd.2008, 466 (1-2), 451–456.
(26) Kuo, C.-H.; Liu, Y.-C.; Chang, C.-M. J.; Chen, J.-H.; Chang, C.; Shieh, C.-J. Carbohydr. Polym.2012, 87 (4), 2538–2545.
(27) Kyzas, G. Z.; Deliyanni, E. A. Molecules2013, 18 (6), 6193–6214.
(28) Ravel, B.; Slimmer, S. C.; Meng, X.; Wong, G. C. L.; Lu, Y. Radiat. Phys. Chem.2009, 78 (10), S75–S79.
(29) Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; Machinami, T.; Ono, A. J. Am. Chem. Soc.2006, 128 (7), 2172–2173.
(30) Abdelhamid, H. N.; Wu, H.-F. J. Am. Soc. Mass Spectrom.2014, 25 (5), 861–868.
(31) Blum, J. D.; Sherman, L. S.; Johnson, M. W. Annu. Rev. Earth Planet. Sci.2014, 42 (1), 249–269.
(32) Kyzas, G. Z.; Travlou, N. A.; Deliyanni, E. A. Colloids Surf. B. Biointerfaces2014, 113, 467–476.
(33) Zhu, M.; Wang, Y.; Deng, Y.; Yao, L.; B Adeloju, S.; Pan, D.; Xue, F.; Wu, Y.; Zheng, L.; Chen, W. Biosens. Bioelectron.2014, 61, 14–20.
(34) Wang, Z. Z.; Deguchi, Y.; Yan, J. J.; Liu, J. P. Spectrosc. Lett.2014, 48 (2), 128–138.
(35) Liu, J.; Lu, Y. Angew. Chemie2007, 119 (40), 7731–7734.
(36) Wang, H.; Chen, B.; Zhu, S.; Yu, X.; He, M.; Hu, B. Anal. Chem.2016, 88 (1), 796–802.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code