Responsive image
博碩士論文 etd-0614116-154159 詳細資訊
Title page for etd-0614116-154159
論文名稱
Title
拓樸絕緣體Sb2SeTe2之線性磁阻
Linear magnetoresistance in Sb2SeTe2 topological insulator
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-29
繳交日期
Date of Submission
2016-07-14
關鍵字
Keywords
拓樸絕緣體、線性磁阻、Sb2SeTe2、物理性質測量系統、霍爾效應
Sb2SeTe2, LMR, topological insulator, Hall effect, PPMS
統計
Statistics
本論文已被瀏覽 5676 次,被下載 36
The thesis/dissertation has been browsed 5676 times, has been downloaded 36 times.
中文摘要
本實驗透過利用物理性質測量系統(Physics Property Measurement System,PPMS),針對拓樸絕緣體(topological insulator)Sb2SeTe2進行量測,藉由改變溫度以及外加磁場的大小,觀察線性磁阻(linear magneto-resistance, LMR)和載子濃度(carrier concentration)的變化,探討線性磁阻可能的成因,嘗試了解拓樸絕緣體內部的傳輸性質。
實驗結果顯示在外加磁場達到9 T以及在10 K~250 K的溫度區間內,磁阻皆呈現線性且非飽和(non-saturating)的趨勢。此外,根據實驗結果發現線性磁阻的臨界磁場(critical field,B*)與線性磁阻會隨著溫度改變產生變化。
進一步的研究發現線性磁阻的斜率與載子移動率(mobility)成正比,臨界磁場(B*)與載子移動率成反比,此現象符合Parish-Littlewood 的理論模型預測。推論其原因為樣品內部的不均勻性(fluctuation)導致載子移動率產生浮動,因而造成線性磁阻現象。
Abstract
The non-saturated and linear magneto-resistance (MR) is observed in Sb2SeTe2 topological insulators from 10 K to 250 K within the external magnetic field reaches 9 T. The crossover magnetic field, B*, of the linear magneto-resistance(MR) increases as temperature increases. The experimental results show that the B* is proportional to the inverse Hall mobility and the magneto-resistance(MR) slope is proportional to the Hall mobility. The experimental result is consistent with the prediction of Parish-Littlewood model.
目次 Table of Contents
論文審定書............................................................................................................i
摘要.......................................................................................................................ii
Abstract………................................................................................................…...iii
目錄.......................................................................................................................iv
圖次.......................................................................................................................vi
表次.......................................................................................................................viii
第一章 簡介...........................................................................................................1
1-1前言................................................................................................................1
1-2動機................................................................................................................2
1-3文獻回顧.........................................................................................................3
第二章 基本理論....................................................................................................4
2-1霍爾效應(Hall effect) [7]..................................................................................4
2-2量子霍爾效應(Quantum Hall effect)................................................................5
2-3量子自旋霍爾效應(Quantum spin Hall effect)..................................................7
2-4拓樸絕緣體(topological insulator)....................................................................8
2-5線性磁阻(Linear magneto-resistance)............................................................10
2-5-1 Abrikosov量子線性磁阻(Quantum linear magnetoresistance) [17]...........10
2-5-2 Wang & Lei 線性磁阻模型 [19]..................................................................12
2-5-3 Parish & Littlewood理論 [22].....................................................................14
第三章 實驗流程與儀器介紹.................................................................................16
3-1樣品製備..........................................................................................................16
3-2物理性質量測系統(PPMS)...............................................................................17
第四章 實驗結果與討論.........................................................................................20
4-1實驗架構..........................................................................................................20
4-2電阻隨溫度的變化............................................................................................21
4-3霍爾量測結果...................................................................................................22
4-4線性磁阻(linear magnetoresistance)分析........................................................24
4-4-1線性磁阻定義.............................................................................................24
4-4-2 Abrikosov量子線性磁阻理論.....................................................................25
4-4-3 Wang & Lei理論........................................................................................31
4-4-4 Parish & Littlewood 理論..........................................................................33
第五章 結論............................................................................................................35
參考文獻.................................................................................................................36
參考文獻 References
[1]M. Z. Hasan, and C. L. Kane, “Topological insulators”, Rev. Mod. Phys. 82, 3045 (2010)
[2]C. Xu, and J. E. Moore, “Stability of the quantum spin Hall effect : effects of interactions, disorder, and Z_2 topology”, Phys. Rev. B 58, 045322 (2006)
[3]W. Zhang, R. Yu, H. J. Zhang, X. Dai, and Z. Fang, “First-principles studies of 3-dimentional strong topological insulators :〖Bi〗_2 〖Te〗_3, 〖Bi〗_2 〖Se〗_3 and 〖Sb〗_2 〖Te〗_3”, New J. Phys. 12, 065013 (2010)
[4]S. Barua, K. P. Rajeev, and A. K. Gupta, “Evidence for the topological surface states in metallic single crystals of 〖Bi〗_2 〖Te〗_3”, J. Phys.: Condens. Matter 27, 015601 (2015)
[5]K. F. Wang, D. Graf, and C. Petrovic, “Large magnetothermopower and Fermi surface reconstruction in 〖Sb〗_2 〖Te〗_2 Se”, Phys. Rev. B 89, 125202 (2014)
[6]J. Feng, Y. Pang, D. Wu, Z. Wang, H. Weng, J. Li, X. Dai, Z. Feng, Y. Shi, and L. Lu, “Large linear magnetoresistance in Dirac semi-metal 〖Cd〗_3 〖As〗_2 with Fermi surface close to the Dirac points”, Phys. Rev. B 92, 081036 (2015)
[7]S. M. Sze, and K. K. Ng, Physics of semiconductor devices (2006)
[8]K.v. Klitzing, “New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance”, Phys. Rev. Lett. 45, 494 (1980).
[9]H.P. Myers, Introductory solid state physics, 2ed (1997)
[10]Charles Kittel, Introduction to solid state physics, 8ed (2006)
[11]Arthur Beiser, Concepts of modern physics, 6ed (2003)
[12]王律堯, “自旋霍爾效應之簡介”, 台灣磁性技術協會會訊49期SEP (2009)
[13]H. Lin, Tanmoy Das, L. A. Wray, S.Y. Xu, M. Z. Hasan, and A. Bansil, “An isolated Dirac cone on the surface of ternary tetradymite-like topological insulators”, New J. Phys. 13, 095005 (2011)
[14]E. P. Amaladass, T. R. Devidas, S. Sharma, C. S. Sundar1, A. Mani, and A. Bharathi, “Magneto-transport behaviour of 〖Bi〗_2 〖Se〗_(3-x) 〖Te〗_x:role of disorder”, J. Phys.: Condens. Matter 28, 075003 (2016)
[15]H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, “Topological insulators in 〖Bi〗_2 〖Se〗_3, 〖Bi〗_2 〖Te〗_3 and 〖Sb〗_2 〖Te〗_3 with a single Dirac cone on the surface ”, Nat. Phys. 5, 438-442 (2009)
[16]Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single Dirac cone on the surface”, Nat. Phys. 5, 398-402 (2009)
[17]A. A. Abrikosov, “Quantum magnetoresistance”, Phys. Rev. B 58, 2788 (1998)
[18]J. S. Hu, and T. F. Rosenbaum, “Classical and quantum routes to linear magnetoresistance”, Nat. Mater. 7, 697-700 (2008)
[19]C. M. Wang, and X. L. Lei, “Linear magnetoresistance on the topological surface”, Phys. Rev. B 86, 035442 (2012)
[20]J.Z. Cao, S.H. Liang, C. Zhang, Y. W. Liu, J. W. Huang, Z. Jin, Z. G. Chen, Z. J. Wang, Q.S. Wang, J. Zhao, S. Y. Li, X. Dai, J. Zou, Z.C. Xia, L. Li, and F.X. Xiu, “Landau level splitting in Cd3As2 under high magnetic fields”, Nat. Commun. 6, 7779 (2015)
[21]Y. S. Fu, T. Hanaguri, K. Igarashi, M. Kawamura, M. S. Bahramy, and T. Sasagawa, “Observation of Zeeman effect in topological surface state with distinct material dependence”, Nat. Commun. 7, 10829 (2016)
[22]M. M. Parish and, P. B. Littlewood, “Non-saturating magnetoresistance in heavily disordered semiconductors”, Nature (London) 426, 162 (2003)
[23]N. V. Kozlova, N. Mori, O. Makarovsky, L. Eaves, Q. D. Zhuang, A. Krier, and A. Patanè, “Linear magnetoresistance due to multiple-electron scattering by low-mobility islands in an inhomogeneous conductor”, Nat. Commun. 3, 1097 (2012)
[24]Quantum Design Hardware Manual (part # 1070-150B), 11578 Sorrento Valley Rd, San Diego, CA 92121-1311 USA, 6ed (2008)
[25]林紹瑜, “拓樸絕緣體Sb_2 SeTe_2的Shubnikov-de Haas振盪”, 國立中山大學物理研究所碩士論文 (2016)
[26]S. X. Zhang, R. D. McDonald, A. Shekhter, Z. X. Bi, Y. Li, Q. X. Jia, and S. T. Picraux, “Magneto-resistance up to 60 Tesla in topological insulator 〖Bi〗_2 〖Te〗_3 thin films”, Appl. Phys. Lett. 101, 202403 (2012)
[27]M. Novak, S. Sasaki, K. Segawa, and Y. Ando, “Large linear magnetoresistance in the Dirac semimetal TIBiSSe”, Phys. Rev. B 91, 041203 (2015)
[28]A. Narayannan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo, Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. C. Canfield, and A. I. Coldea, “Linear magnetoresistance cause by mobility fluctuations in n-doped 〖Cd〗_3 〖As〗_2”, Phys. Rev. Lett. 114, 117201 (2015)
[29]K. F. Wang, D. Graf, H. C. Lei, S. W. Tozer, and C. Petrovic, “Quantum transport of two-dimensional Dirac fermions in SrMn〖Bi〗_2”, Phys. Rev. B 84, 220401 (2011)
[30]K. F. Wang, D. Graf, L.M. Wang, H. C. Lei, S. W. Tozer, and C. Petrovic, “Two-dimensional Dirac fermions and quantum magnetoresistance in CaMn〖Bi〗_2”, Phys. Rev. B 85, 041101 (2012)
[31]K. K. Huynh, Y. Tanabe, and K. Tanigaki, “Both electron and hole Dirac cone states in Ba〖(FeAs)〗_2 confirmed by magnetoresistance”, Phys. Rev. Lett. 106, 217004 (2011)
[32]J. Xiong, Y. K. Luo, Y. H. Khoo, S. Jia, R. J. Cava, and N. P. Ong, “High-field Shubnikov–de Haas oscillations in the topological insulator 〖Bi〗_2 〖Te〗_2 Se”, Phys. Rev. B 86, 045314 (2012)
[33]Z. C. Zhang, W. Wei, F. Y. Yang, Z. W. Zhu, M. H. Guo, Y. Feng, D. J. Yu, M. Y. Yao, N. Harrison, R. McDonald, Y. B. Zhang, D. D. Guan, D. Qian, J. F. Jia, and Y.Y. Wang, “Zeeman effect of the topological surface states revealed by quantum oscillations up to 91 Tesla”, Phys. Rev. B 92, 235402 (2015)
[34]A. A. Taskin, and Y. Ando, “ Berry phase of nonideal Dirac fermions in topological insulators”, Phys. Rev. B 84, 035301 (2011)
[35]D. A. Moseley, K. A. Yates, N. Peng, D. Mandrus, A. S. Sefat, W. R. Branford, and L. F. Cohen, “Magnetotransport of proton-irradiated Ba〖Fe〗_2 〖As〗_2 and Ba〖Fe〗_1.985 〖Co〗_0.015 〖As〗_2 single crystals”, Phys. Rev. B 91, 054512 (2015)
[36]Z. H. Wang, L. Yang, X. J. Li, X. T. Zhao, H. L. Wang, Z. D. Zhang, and X. P. A. Gao, “Granularity Controlled Nonsaturating Linear Magnetoresistance in Topological Insulator 〖Bi〗_2 〖Te〗_3 Films”, Nano Lett. 14, 6510–6514 (2014)
[37]Y. Yan, L. X. Wang, D. P. Yu, and Z. M. Liao, “Large magnetoresistance in high mobility topological insulator 〖Bi〗_2 〖Se〗_3”, Appl. Phys. Lett. 103, 033106 (2013)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code