Responsive image
博碩士論文 etd-0614116-154213 詳細資訊
Title page for etd-0614116-154213
論文名稱
Title
拓樸絕緣體 Sb2SeTe2的Shubnikov-de Haas振盪
Shubnikov-de Haas oscillations of Sb2SeTe2 topological insulator
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
42
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-29
繳交日期
Date of Submission
2016-07-14
關鍵字
Keywords
拓樸絕緣體、藍道能階、Sb2SeTe2、Shubnikov-de Haas oscillations、狄拉克費米子
topological insulator, Landau level, Dirac fermion, Sb2SeTe2, Shubnikov-de Haas oscillations
統計
Statistics
本論文已被瀏覽 5684 次,被下載 58
The thesis/dissertation has been browsed 5684 times, has been downloaded 58 times.
中文摘要
本實驗使用PPMS研究拓樸絕緣體Sb2SeTe2於低溫高磁場下,發生量子化週期性振盪Shubnikov-de Haas Oscillation,簡稱SdH Oscillation之現象,其霍爾效應(Hall effect)量測結果顯示載子為電洞,藉由量測並分析拓樸絕緣體週期性振盪,得到拓樸絕緣體Sb2SeTe2表面載子濃度(carrier concentration)與載子遷移率(carrier mobility),Landau-level fan diagram中得到Berry phase為0.46,證明該載子為狄拉克費米子(Dirac fermion),根據半古典理論Lifshitz-Kosevich formula,推導出其載子有效質量(effective mass)為0.17個電子質量,由振盪週期中所提取出的費米波數(Fermi wave vector)
Abstract
The Shubnikov-de Haas (SdH) oscillation is measured in the topological insulator Sb2SeTe2. Hall effect measurements demonstrate the carrier is hole. Following the Landau-level fan diagram, the Berry phase, β=0.46, that indicated the oscillation is from surface state. The Lifshitz-Kosevich formula supports that effective mass of the transport carrier is 0.17me. The extracted the Fermi wave vector kf = 7.9×10^8 m^(-1) that is consistent with the result of ARPES, kf=7.5×10^8 m^(-1).
目次 Table of Contents
目錄
論文審定書...............................................................................................................i
摘要........................................................................................................................ii
Abstract..................................................................................................................iii
目錄.......................................................................................................................iv
圖次.......................................................................................................................vi
第一章 簡介......................................................................................................1
1-1 前言...............................................................................................................1
1-2 動機...............................................................................................................2
第二章 基本理論................................................................................................3
2-1 拓樸絕緣體(topological insulator).......................................................................3
2-2 Berry phase....................................................................................................5
2-3 藍道能階(Landau level)....................................................................................6
2-4 霍爾效應(Hall effect)........................................................................................7
2-5 量子霍爾效應(Quantum Hall effect)...................................................................8
2-6 自旋量子霍爾效應(Quantum spin Hall effect)......................................................9
2-7 Shubnikov-de Haas振盪效應............................................................................10
第三章 樣品製備與儀器介紹..............................................................................12
3-1 樣品製備.......................................................................................................12
3-2 量測系統與方法.............................................................................................13
3-2-1 物理性質量測系統...................................................................................13
3-2-2 量測方法................................................................................................17
第四章 實驗結果與討論.....................................................................................18
4-1 實驗架構.......................................................................................................18
4-2 結果與討論....................................................................................................19
4-2-1 剩餘電阻比............................................................................................19
4-2-2 霍爾量測................................................................................................20
4-2-3 SdH振盪 - Onsager relation.....................................................................21
4-2-4 SdH振盪 - Berry phase...........................................................................24
4-2-5 SdH振盪 - Lifshitz Kosevich theory..........................................................25
第五章 結論.....................................................................................................28
參考文獻................................................................................................................29
參考文獻 References
[1] C. L. Kane, and E. J. Mele,“Quantum Spin Hall Effect in Graphene”,
Phys. Rev. Lett. 95, 226801 (2005)
[2] C. L. Kane and E. J. Mele, “Z2 Topological Order and the Quantum Spin Hall Effect”, Phys. Rev. Lett. 95, 146802 (2005)
[3] C. Xu, and J. E. Moore, “Stability of the quantum spin Hall effect : effects of interactions, disorder, and Z_2 topology”, Phys. Rev. B 58, 045322 (2006)
[4] B. A. Bernevig, and S. C. Zhang,“Quantum Spin Hall Effect”,
Phys. Rev. Lett. 96, 106802 (2006)
[5] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp,
X. L. Qi, and S. C. Zhang,“Quantum Spin Hall Insulator State in HgTe Quantum Wells”, Science 318, 5851 (2007)
[6] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase”, Nature 452, 970 (2008)
[7] K. Shrestha, V. Marinova, B. Lorenz, and P. C. W. Chu, “Shubnikov de Haas oscillations from topological surface states of metallic Bi2Se2.1Te0.9” ,
Phys. Rev. B 90, 241111(R) (2014)
[8] Y. Ando,“Topological Insulator Materials”, J. Phys. Soc. Jpn. 82, 102001 (2013)
[9] B. A. Bernevig, Topological Insulators and Topological Superconductors (2013)
[10] X. L. Qi, and S. C. Zhang, “Topological insulators and superconductors”,
Rev. Mod. Phys. 83, 1057 (2011)
[11] A. R. Wright, and R. H. McKenzie, “Quantum oscillations and Berry’s phase in topological insulator surface states with broken particle-hole symmetry” ,
Phys. Rev. B 87, 085411 (2013)
[12] S.Y. Xu, L. A. Wray, Y. Xia, R. Shankar, A. Petersen, A. Fedorov, H. Lin,
A. Bansil, Y. S. Hor, D. Grauer, R. J. Cava, and M. Z. Hasan, “Discovery of several large families of Topological Insulator classes with backscattering suppressed spin-polarized single-Dirac-cone on the surface”, arXiv 1007, 5111 (2010)
[13] M. V. Berry,“Quantal Phase Factors Accompanying Adiabatic Changes” .
Proc. R. Soc. Lond. A 392, 45 (1984)
[14] H. Kroemer, Quantum mechanics : for engineering, materials science, and applied physics, 1ed (1994)
[15] D. J. Griffiths, Quantum Mechanics, 2ed (2005)
[16] N. P. Butch, K. Kirshenbaum, P. Syers, A. B. Sushkov, G. S. Jenkins, H. D. Drew, and J. Paglione, “Strong surface scattering in ultrahigh-mobility Bi2Se3 topological insulator crystals” , Phys. Rev. B. 81, 241301 (2010)
[17] S. M. Huang, S. Y. Lin, J. F. Chen, C. K. Lee, S. H. Yu, M. C. Chou, C. M. Cheng, and H. D. Yang, “Shubnikov–de Haas oscillation of Bi2Te3 topological insulators with cm-scale uniformity”, J. Phys. D: Appl. Phys. 49, 255303 (2016)
[18] S. Barua, K. P. Rajeev, and A. K. Gupta,“Evidence for topological surface states in metallic single crystals of Bi2Te3” , J. Phys.: Condens. Matter 27 015601 (2015)
[19] J. Xiong, Y. Luo, Y. H. Khoo, S. Jia, R. J. Cava, and N. P. Ong, “High-Field Shubnikov-de Haas Oscillations in the Topological Insulator Bi2Te2Se” ,
Phys. Rev. B 86, 045314 (2012)
[20] B. Hamdou, J. Gooth, A. Dorn, E. Pippel, and K. Nielsch,“Surface state dominated transport in topological insulator Bi2Te3 nanowires” , Appl. Phys. Lett. 103, 193107 (2013)
[21] Y. Yan, L. X. Wang, X. Ke, G. V. Tendeloo, X. S. Wu, D. P. Yu, and Z. M. Liao, “High-Mobility Bi2Se3 Nanoplates Manifesting Quantum Oscillations of Surface States in the Sidewalls” , Science 4, 3817 (2014)
[22] G. Eguchi, K. Kuroda, K. Shirai, A. Kimura, and M. Shiraishi, “Surface Shubnikov -de Haas oscillations and nonzero Berry phases of the topological hole conduction in Tl1−xBi1+xSe2” , Phys. Rev. B 90, 201307(R) (2014)
[23] Simon M. Sze, Kwok K. Ng, Physics of semiconductor devices (2006)
[24] K.v. Klitzing, ” New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance” , Phys. Rev. Lett. 45, 494 (1980)
[25] C. Kittel, Introduction to solid state physics, 8ed (2006)
[26] 王律堯,“自旋霍爾效應之簡介”. 台灣磁性技術協會會訊49期SEP(2009)
[27] D. X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong,“Quantum Oscillations and Hall Anomaly of Surface States in the Topological Insulator Bi2Te3”,
Science 329, 5993 (2010)
[28] K. F. Wang , D. Graf, and C. Petrovic , “Large magnetothermopower and Fermi surface reconstruction in Sb2Te2Se”, Phys. Rev. B 89, 125202 (2014)
[29] J. J. Feng, Y. Pang, D. Wu, Z. Wang, H. Weng, J. Li, X. Dai, Z. Fang, Y. Shi, and
L. Lu,“Large linear magnetoresistance in Dirac semi-metal Cd3As2 with Fermi surfaces close to the Dirac points”, Phys. Rev. B 92, 081306 (2015)
[30] T. Liang, Q. Gibson , M. N. Ali , M. Liu , R. J. Cava, and N. P. Ong,“Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2”,
Nature (London) 14, 280 (2015)
[31] K. Wang, D. Graf, L. Wang, H. Lei, S. W. Tozer, and C. Petrovic,“Two-dimensional Dirac fermions and quantum magnetoresistance in CaMnBi2”,
Phys. Rev. B 85, 041101(2012)
[32] Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando,“Fermi level tuning and a large activation gap achieved in the topological insulator Bi2Te2Se by Sn doping”, Phys. Rev. B 85, 155301 (2012)
[33] T. C. Hsiung, D. Y. Chen, L. Zhao, Y. H. Lin, C. Y. Mou, T. K. Lee, M. K. Wu, and Y. Y. Chen,“Enhanced surface mobility and quantum oscillations in topological insulator Bi1.5Sb0.5Te1.7Se1.3 nanoflakes”, Appl. Phys. Lett. 103, 163111 (2013)
[34] B. J. Lawson, Y. S. Hor, and Lu Li,“Quantum Oscillations in the Topological Superconductor Candidate Cu0:25Bi2Se3”, Phys. Rev. Lett. 109, 226406 (2012)
[35] A. A. Taskin, Z. Ren, S. Sasaki, K. Segawa, and Y. Ando, “Observation of Dirac Holes and Electrons in a Topological Insulator”, Phys. Rev. Lett. 107, 016801 (2011)
[36] D. Kong, J. J. Cha, K. Lai, H. Peng, J. G. Analytis, S. Meister, Y. Chen,
H. J. Zhang, I. R. Fisher, Z. X. Shen, and Y. Cui,“Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi2Se3”, Nano Lett. 5, 4698–4703 (2011)
[37] M. Novak, S. Sasaki, K. Segawa, and Y. Ando,“Large linear magnetoresistance in the Dirac semimetal TlBiSSe”, Phys. Rev. B. 91, 041203
[38] A. A. Taskin, K. Segawa, and Y. Ando,“Oscillatory angular dependence of the magnetoresistance in a topological insulator Bi1−xSbx”, Phys. Rev. B. 82, 121302 (2010)
[39] W. Wang, Y. Du, G. Xu, X. Zhang, E. Liu, Z. Liu, Y. Shi, J. Chen, G. Wu, and
X. X. Zhang,“Large Linear Magnetoresistance and Shubnikov-de Hass Oscillations in Single Crystals of YPdBi Heusler Topological Insulators”, Scientific Reports 3, 2181 (2013)
[40] Y. S. Fu, T. Hanaguri, K. Igarashi, M. Kawamura, M. S. Bahramy , and
T. Sasagawa,“Observation of Zeeman effect in topological surface state with distinct material dependence”, Nature 10, 1038 (2016)
[41] B. Fallahazad, H. C. P. Movva, K. Kim, S. Larentis, T. Taniguchi, K. Watanabe, S. K. Banerjee, and E. Tutuc,“Shubnikov–de Haas Oscillations of High-Mobility Holes in Monolayer and Bilayer WSe2:Landau Level Degeneracy, Effective Mass, and Negative Compressibility”, Phys. Rev. Lett. 116, 086601 (2016)
[42] T. V. Menshchikova, S. V. Eremeev, , and E. V. Chulkov,“On the Origin of Two Dimensional Electron Gas States at the Surface of Topological Insulators”, JETP Letters, 94, 106 (2011)
[43] Quantum Design Hardware Manual (part# 1070-150B), 11578 Sorrento Valley Rd, San Diego, CA 92121-1311 USA, 6ed (2008)
[44] P. Frank, Matter and Methods at Low Temperatures ,3ed (1996)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code