Responsive image
博碩士論文 etd-0614116-173806 詳細資訊
Title page for etd-0614116-173806
論文名稱
Title
五氧化二鉭光波導的非線性光學特性量測和應用
Measurement and application of optical nonlinearity in Ta2O5 waveguide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-08
繳交日期
Date of Submission
2016-07-14
關鍵字
Keywords
光波導、五氧化二鉭、自相位調變、光學克爾效應、非線性折射率
Optical Kerr effect, Optical waveguide, Self-phase modulation (SPM), Ta2O5, Nonlinear refractive index
統計
Statistics
本論文已被瀏覽 5671 次,被下載 57
The thesis/dissertation has been browsed 5671 times, has been downloaded 57 times.
中文摘要
脈衝雷射光源的產生促進了非線性光學的密集研究,而在近幾年對於現代光通訊的發展,不僅是傳輸速度需要提高,在元件上也致力於開發出更小的尺寸,為了研究低輸入功率和傳輸速度高的元件,我們致力於開發次微米光波導以及其非線性光波導應用。
在非線性光學材料的選擇上,一般來說需要高的非線性光學特性,而且在傳遞過程中無過多的吸收損耗或是雙光子吸收(Two photon absorption ,TPA)、自由載子吸收(Free carrier absorption ,FCA)的影響,因此我們選擇五氧化二鉭(Tantalum pentoxide ,Ta2O5)作為我們製作次微米光波導的非線性材料,而Ta2O5材料比SiC、SiN、SiO2有更高的非線性折射率,並且在可見光到紅外光波段也無吸收損耗,更重要的是寬能隙材料Ta2O5中無TPA的影響,所以我們使用Ta2O5光波導元件來進行非線性光波導的研究及應用。
第一部分實驗工作我們架設了自相位調變(Self-Phase Modulation ,SPM)量測系統並且注入一飛秒脈衝進入Ta2O5光波導,藉由極強的脈衝尖峰功率,導致明顯的非線性折射率變化,進而影響相位,最後使脈衝光譜拓寬,利用此原理量測材料的非線性折射率n2在800nm約為1.28×10-14 cm2/W 。當尖峰耦合功率從0增加至44W,光譜會從9nm拓寬至約43nm。此外,我們也利用SPM系統量測出輸入和輸出呈現線性關係證實了Ta2O5光波導內無TPA影響。
第二部分實驗工作我們透過Ta2O5環形共振腔達到全光調變的目的,將脈衝光源打入環形共振腔內,因為克爾效應(Kerr effect)造成環形共振腔內折射率的改變而導致整體環形共振腔的穿透頻譜改變,讓脈衝光可以直接調製環形共振腔內特定波長的穿透率,產生一個光的調變,因此,我們可以透過Ta2O5環形共振腔達到全光調變的結果。
在我的研究中成功利用Ta2O5光波導達成在800nm下SPM光譜拓寬的成果,在n2估算結果也比SiN相比大了三倍;另外,我也利用Ta2O5環形共振腔實現了在紅外光區的超快全光開關,證明了Ta2O5在非線性光波導應用的潛力以及其優勢。
Abstract
Nonlinear waveguide applications have been widely investigated in recent years. The nonlinear optical materials with high Kerr nonlinearity can be utilized to demonstrate supercontinuum generation as well as all-optical Kerr switch. In our work, we utilize Ta2O5 as the core layer of the waveguide to realize nonlinear waveguide applications. Due to the ultralow linear and nonlinear absorption loss of Ta2O5 from UV to infrared regions, the Ta2O5 is suitable for developing broadband and efficient nonlinear waveguides. The first part of my work is to demonstrate the SPM in the submicron Ta2O5 channel waveguide. By injecting fs pulse laser into Ta2O5 channel waveguide, the linewidth of Ti:sapphire laser is increased from 9 nm to 43 nm when the peak power is increased from 0 to 44W. The nonlinear refractive index of Ta2O5 at ~800nm is estimated to be 1.28×10-14 cm2/W. Furthermore, even the peak intensity is increased up to 29.38 GW/cm2, there is no nonlinear absorption effect in the Ta2O5 waveguide. In the second part of my work, we have realized the ultrafast all-optical modulation at communication region by using the Ta2O5 micro-ring resonator. By injecting a pulse laser into the ring resonator at resonance, the transmission spectrum of Ta2O5 micro-ring resonator can be modified due to the Kerr effect. That is, we can control the transmittance of the ring resonator around the resonance dip. Based on a pump-probe system, the CW-probe can be modulated by the pump pulse laser. The 0.045 nm wavelength shift of transmission spectrum in Ta2O5 ring cavity can be achieved by injecting the pulse laser with peak intensity of 0.12 GW/cm2. The nonlinear refractive index of Ta2O5 is calculated to be 3.4×〖10〗^(-14)cm2/W at ~1550nm, which is at least three times larger than Si3N4. Our results show that the Ta2O5 indeed has great potentials in developing the nonlinear waveguide applications.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1材料介紹 1
1-2論文動機 7
1-3論文架構 12
第二章 脈衝雷射在材料中產生克爾效應之光譜拓寬在非線性光波導中的量測和研究 13
2-1自相位調變(Self-Phase Modulation , SPM)原理 13
2-2 SPM系統端面耦光效率之計算 16
2-2-1 光波導元件介紹和量測方法 16
2-2-2 雙光子吸收對於SPM拓寬的影響 17
2-2-3 端面損耗估算 18
2-2-4 尖峰耦合功率在光波導中的實際耦合計算 20
2-3 SPM光譜拓寬分析 28
2-3-1系統架設介紹 28
2-3-2 光譜拓寬和文獻比較結果 28
2-3-3 非線性折射率n2的結果計算 30
2-4 TE、TM波對SPM光譜拓寬的定量分析 31
2-4-1 系統量測方法 31
2-4-2 光譜拓寬分析結果 32
2-4-3 TE、TM在光波導中的光場模擬結果 34
2-5 總結 36
第三章 Ta2O5光波導中超快全光開關的量測和研究 37
3-1 全光調變的原理介紹 37
3-1-1全光調變的原理 37
3-1-2全光調變的系統架設和元件介紹 38
3-2 全光調變的調變訊號結果分析 41
3-2-1全光調變的調變訊號結果 41
3-2-2非線性折射率值n2的計算 45
3-3 Ta2O5微環共振腔中不同長直波導和環形共振腔間距的全光調變結果 49
3-3-1 Ta2O5微環共振腔中不同長直波導和環形共振腔間距的穿透譜情形 49
3-3-2 Ta2O5微環共振腔中不同長直波導和環形共振腔間距的品質因子(Q)、 傳輸係數和衰減係數的討論 56
3-3-3 Ta2O5微環共振腔中不同長直波導和環形共振腔間距的調變訊號結果比較 58
3-4總結 62
第四章 結論與未來工作 63
參考文獻 65
參考文獻 References
[1] https://zh.wikipedia.org/wiki/同轴电缆
[2] K. Kao, and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of the institution of electrical engineers-London 133, 191-198 (1986)
[3] 張安華博士“Fiber-Optic Communications and Practice”,http://www.wun-ching.com.tw/img/Books_files/C110e2-9789862369548-trial.pdf
[4] http://www.pewc.com.tw/tc/p2-products-3-3-12.asp
[5] 林天送, “積體電路的發明”, 科學發展 447, 72-74 (2010)
[6] https://commons.wikimedia.org/wiki/File:Siliconchip_by_shapeshifter.png
[7] https://zh.wikipedia.org/wiki/積體光學
[8] H. Jung, C. Xiong, K. Y. Fong, X. F. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810-2813 (2013)
[9] J. Y. Lee, LH. Yin, G. P. Agrawal, and P. M. Fauchet, “Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides,” Opt. Express 18, 11514-11523 (2010)
[10] http://photonicswiki.org/index.php?title=Two_Photon_Absorption
[11] http://www.slideshare.net/KamalKhan822/solids-conductors-insulators-semiconductors
[12] G. M. Maria, “Über Elementarakte mit zwei Quantensprüngen,” Ann Phys. 9, 273–294 (1931)
[13] H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416-418 (2002)
[14] S. Gaugiran, S. Getin, J. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Derouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956-6963 (2005)
[15] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg,“Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214-1217 (2007)
[16] J. M. Laniel, N. Ho, R. Vallee, and A. Villeneuve, “Nonlinear-refractive-index measurement in As2S3 channel waveguides by asymmetric self-phase modulation,” J. Opt. Soc. Am. B. 22, 437-445 (2005)
[17] E. Y. M. Teraoka, D. H. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. L. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett. 97, 071105 (2010)
[18] https://zh.wikipedia.org/wiki/硅
[19] M. Mirzaee, A. Zendehnam, and S. Miri, “Surface statistical properties of ZnO thin films produced by magnetron sputtering at different rates,” Scientia Iranica 20, 1071-1075 (2013)
[20] O. D. Vol’pyan, P. P. Yakovlev, B. B. Meshkov, and Y. A. Obod, “Optical properties of Ta2O5 films obtained by reactive magnetron sputtering,” J. Opt. Technol. 70, 669-672 (2003)
[21] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photon 4, 37-40 (2010)
[22] R. Halir, Y. Okawachi, J. S. Levy, M. A. Forster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett. 37, 1685-1687 (2012)
[23] P. Weinberger, “John Kerr and his effects found in 1877 and 1878”, Philosophical Magazine Letters 88, 897-907 (2008)
[24] https://en.wikipedia.org/wiki/Kerr_effect
[25] https://en.wikipedia.org/wiki/Self-phase_modulation
[26] P. Rüdiger, Noise in Laser Technology, Laser Technik Journal 7 , 48 (2010).
[27] S. J. Pearce, M. D. B. Charlton, J. Hiltunen, J. Puustinen, J. Lappalainen, and J. S. Wilkinson, “Structural characteristics and optical properties of dielectric thin films for planar waveguiding applications,” Surface & Coatings Technology 206, 4930-4939 (2012)
[28] E. W. V. Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490-492 (1985)
[29] T. R. Graham, P. K. Andrew,Silicon Photonics:an introduction (2004)
[30] http://imedea.uib-csic.es/~salvador/docencia/coms_optiques/addicional/ibm/ch02/02-14.html
[31] https://www.rp-photonics.com/single_mode_fibers.html
[32] C. Y. Tai, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, F. Cattaneo, C. E. Finlayson, and J. J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12, 5110-5116 (2004)
[33] D. T. H. Tan, K. Ikeda, P. C. Sun, and Y. Fainman, “Group velocity dispersion and self phase modulation in silicon nitride waveguides,” Appl. Phys. Lett. 96, 061101 (2010)
[34] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214-1217 (2007)
[35] A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nature Communications 6, 6299 (2015)
[36] M. Sheik-Bahae, A. A. Said, and E. W. V. Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955-957 (1989)
[37] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE Journal Of Quantum Electronics 26, 760-769 (1990)
[38] S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Lin, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express 21, 2072-2082 (2013)
[39] X. Y. Lu, J. Y. Lee, S. Rogers, and Q. Lin, “Optical Kerr nonlinearity in a high-Q silicon carbide microresonator,” Opt. Express 22, 30826-30832 (2014)
[40] G. P. Agrawal, Nonlinear Fiber Optics 2000
[41] W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6, 47-73 (2012)
[42] B. S. Ahluwalia, O. G. Helleso, A. Z. Subramanian, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication and optimization of Tantalum Pentoxide waveguides for optical micro-propulsion,” SPIE Proc 7604 (2010)
[43] P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” Journal of Lightwave Technology 20, 1968-1975 (2002)
[44] A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615-618 (2004)
[45] B. S. Ahluwalia, A. Z. Subramanian, O. G. Helleso, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles,” IEEE Phot. Tech. Lett. 21, 1408-1410 (2009)
[46] J. C. Zhou, D. T. Luo, Y. Z. Li, and Z. Liu, “Effect of sputtering pressure and rapid thermal annealing on optical properties of Ta2O5 thin films,” Trans. Nonferrous Met. Soc. China 19, 359−363 (2009)
[47] Y. L. Jonathan, Y. Lianghong, P. A. Govind, and M. F. Philippe, “Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides,” Opt. Express 18, 11514-11523 (2010)
[48] H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13, 4630-4637 (2005)
[49] G. P. Agrawal, and N. A. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” lEEE Journal Of Quantum Electronics 25, 2997-2306 (1989)
[50] P. N. Kean, K. Smith, and W. Sibbett, “Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre,” IEE Proceedings 134, 163-170 (1987)
[51] A. K. Chu, M. J. Chuang, K. Y. Hsieh, H. L. Huang, Y. C. Yu, C. W. Wang, and E. K. Lin, “Microstructure and corrosion resistance of room-temperature RF sputtered Ta2O5 Thin Films,” J. Electron. Mater. 28, 1457-1459 (1999).
[52] V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302-1304 (2003)
[53] C. L. Wu, B. T. Chen, Y. Y. Lin, W. C. Tien, G.R. Lin, Y. J. Chiu, Y. J. Hung, A. K. Chu, and C. K. Lee, “Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure,” Opt. Express 23, 26268-26275 (2015)
[54] C. L. Wu, Y. J. Chiu, C. L. Chen, Y. Y. Lin, A. K. Chu, and C. K. Lee, “Four-wave-mixing in the loss low submicrometer Ta2O5 channel waveguide,” Opt. Lett. 40, 4528-4531 (2015)
[55] https://commons.wikimedia.org/wiki/File:Self-phase-modulation-en.svg
[56] J. S. Pelc, K. Rivoire, S.Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 22, 3797-3810 (2014)
[57] V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081-1084 (2004)
[58] Y. D. Wu, M. L. Huang, M. H. Chen, and R. Z. Tasy, “All-optical switch based on the local nonlinear Mach-Zehnder interferometer,” Opt. Express 15, 9883-9892 (2007)
[59] https://www.pida.org.tw/optolink/optolink_pdf/90033210.pdf
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code