Responsive image
博碩士論文 etd-0614117-165531 詳細資訊
Title page for etd-0614117-165531
論文名稱
Title
TMAH廢水處理效率及操作條件之研究
Study of treatment efficiency and operating conditions on treating TMAH wastewater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-08
繳交日期
Date of Submission
2017-07-14
關鍵字
Keywords
上流式厭氧污泥槽( UASB )、氫氧化四甲基銨( TMAH )、薄膜生物反應槽( MBR )、水力停留時間( HRT )
Up-flow Anaerobic Sludge Bioreactor (UASB), Tetramethyl Ammonium Hydroxide (TMAH), Membrane bioreactor (MBR), Hydraulic Retention Time (HRT)
統計
Statistics
本論文已被瀏覽 5689 次,被下載 0
The thesis/dissertation has been browsed 5689 times, has been downloaded 0 times.
中文摘要
本研究是上流式厭氧生物反應槽( Up-flow Anaerobic Sludge Bioreactor , UASB ) 處理實廠廢水,處理後出水再經由好氧薄膜生物反應槽(Membrane bioreactor , MBR)處理,旨在探討上流式厭氧生物反應槽、MBR之出流水氫氧化四甲基氨(Tetramethyl Ammonium Hydroxide , TMAH)之處理效率及操作條件。
所有實驗是在改變操作因子pH、入流溫度和水力停留時間(Hydraulic Retention Time ,HRT ),以找尋處理系統在不同操作因子之最佳處理效率。於處理系統出流水之結果,在不同pH下實廠TMAH廢水經UASB與MBR出流水水質比較,pH = 8時,處理效率最佳,及水中含氮產物含量相對較低,原因為高pH及低pH都易使產物含量上升;當入流溫度為25 ℃時,UASB+MBR系統出水TMAH處理效率最佳,原因為入流溫度提高時,TMAH處理效率下降,水中含氮產物含量上升;當HRT=8時,UASB+MBR系統出水TMAH處理效率最佳,原因為HRT>8時轉換較多含氮副產物,故HRT<8時TMAH處理效率降低。
Abstract
This research focused on the treatment efficiency of raw wastewater by Up-flow Anaerobic Sludge Bioreactor (UASB). The effluent from UASB was then treated by an aerobic membrane bioreactor (MBR). In this study, the operating conditions of UASB and MBR was tested and developed
The operating factors in all tests were including pH, influent temperature and hydraulic retention time (HRT). In pH=8 , UASB and MBR system had optimal efficiencies on removal of TMAH. Less concentration of nitrogen products in effluent of UASB and MBR.Because lots of concentration of nitrogen products were formed at high pH or low pH . At temperature of 25 ℃ , the performance of UASB and MBR system was found the optimal. The concentration of TMAH decreased with increasing temperature.The concentration of nitrogen increased with increasing temperature. In HRT=8 , the performance on TMAH treated by UASB and MBR system with good efficiency was obtained. Nitrogen content increased with increased HRT and decrease of treatment efficiency of TMAH by this treatment systems when HRT < 8
目次 Table of Contents
中文摘要 ii
Abstract iii
目 錄 iv
圖目錄 viii
表目錄 xii
第一章 前 言 1
1-1 研究緣起 1
1-2 研究目的 2
1-3 研究內容 2
第二章 文獻回顧 3
2-1光電與半導體產業廢水特性 3
2-1-1 光電相關產業 3
2-1-2 半導體產製程 10
2-2 TMAH 廢水特性 15
2-2-1 廢水特性 15
2-2-2 TMAH廢水相關之處理方法 17
2-3 上流式厭氧污泥生物反應槽( UASB )原理 19
2-3-1 降解機制、原理 19
2-4 生物薄膜反應器( MBR )架構原理 22
2-4-2 MBR處理廢水之應用 24
2-5 氮危害及除氮機制 27
2-5-1 氮危害 27
2-5-2 硝化作用( Nitrification ) 29
2-5-3 脫硝作用( Denification ) 30
2-5-4 去除氨氮廢水之方法 32
2-6 厭氧菌 33
2-6-1 厭氧菌於土壤之研究 33
2-6-2 厭氧菌於水體之研究 34
第三章 研究方法 36
3-1 研究架構與流程 36
3-1-1 實驗規劃 36
3-1-2 實驗流程 38
3-2 分析方法與水質實驗項目 41
3-2-1 溫度與pH值 43
3-2-2 容氧量 (Dissolved oxygen, DO ) 43
3-2-3 生化需氧量( Biochemical oxygen demand, BOD5 ) 43
3-2-4 化學需氧量( Chemical Oxygen Demand, COD ) 43
3-2-5 總氮 44
3-2-6 氨氮( NH3-N ) 44
3-2-7 凱氏氮 44
3-2-8 硝酸鹽氮( NO3--N ) 45
3-2-9 亞硝酸鹽氮( NO2--N ) 46
3-2-10 四甲基氫氧化銨 ( TMAH ) 46
3-2-11 MLSS與MLVSS 46
3-3 實驗設備與相關藥品 48
3-3-1 實驗設備 48
3-3-2 實驗常用藥品 51
第四章 結果與討論 52
4-1 實廠廢水經由UASB與MBR出流水水質隨pH之變化 52
4-1-1 TMAH及總氮在不同pH值條件下之比較 52
4-1-2 各單元出流水水質隨pH的變化及比較 56
4-2 實廠廢水經由UASB與MBR出流水水質隨溫度之變化 61
4-2-1 TMAH及總氮在不同溫度條件下之比較 61
4-2-2 各單元出流水水質隨溫度的變化及比較 67
4-3實廠廢水經由UASB與MBR出流水水質隨HRT之變化 72
4-3-1 TMAH及總氮在不同HRT下的比較 72
4-3-2 各單元出流水隨HRT的變化及比較 78
第五章 結論 83
5-1 結論 83
5-2 建議 83
參考資料 84
附錄 91
4-4-1 TMAH及總氮在其他pH條件及HRT=24條件下的比較 91
4-4-2 UASB單元出流水水質隨pH及HRT的變化及比較 96
參考文獻 References
1. American Public Health Association, American Water Works Association and Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 21st ed., Method 4500-O A, B, C, and G, pp. 4-136~4-143, Washington, D.C., USA, (2005).
2. American Public Health Association, American Water Works Association & Water Pollution Control Federation. Standard Methods for the Examination of Water and Wastewater, 21th ED., Method 5210B, pp.5-2~5-7. APHA, Washington, D.C., USA. (2005).
3. American Public Health Association, American Water Works Association and Water Pollution Control Federation, Standard Methods for the Examination of Water and Wastewater , 20th ed . , Method 4500 - NH3 , pp. 4 - 103 ~ 4 - 109, APHA , Washington ,D.C.,USA,(1998).
4. Guanglei Qiu, Yong-hui Song, Ping Zeng, Liang Duan, Shuhu Xiao, “Characterization of bacterial communities in hybrid upflow anaerobic sludge blanket (UASB)–membrane bioreactor (MBR) process for berberine antibiotic wastewater treatment.” Bioresource Technology(2013).
5. Zhang, Y, Love, N, and Edwards, M, "Nitrification in Drinking Water Systems", Critical Reviews in Environmental Science and Technology, 39(3): pp. 153-208,(2009).
6. Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H.P., and Schleper, C. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7 , pp. 1985 – 1995,(2005)
7. W. Reineke, M. Schlömann: Umweltmikrobiologie, , pp. 223-224,(2007)
8. W. G. Zumft: Cell biology and molecular basis of denitrification. In: Microbiology and Mololecular Biology Reviews. Bd. 61 pp. 533-616. ,(1997)
9. Chial B. and Persoone G.. Cyst-based toxicity tests. XI.Influence of the type of food on the intrinsic growth rate of the rotifer Brachionus calyciflorus in short-chronic toxicity tests . Chemosphere (2003).
10. Chin-Nan Lei , Liang-Ming Whang, Po-Chun Chen,Biological treatment of thin-film transistor liquid crystal display (TFT-LCD) wastewater using aerobic and anoxic/oxic sequencing batch reactors(2010).
11. Choi, C., Lee, J. Lee, K. and Kim, M. “The effects on operations condition of sludge retention time and carbon/nitrogen ratio in an intermittently aerated membrane bioreactor (IAMBR). ” Bioresource Technology 99 (2008).
12. Canals, O., Massana, R., Riera, J. L., Balagué, V., & Salvadó, H. (2017). Microeukaryote community in a partial nitritation reactor prior to anammox and an insight into the potential of ciliates as performance bioindicators. New Biotechnology.
13. Chen, S. Y., Lu, L. A., & Lin, J. G. (2016). Biodegradation of tetramethylammonium hydroxide (TMAH) in completely autotrophic nitrogen removal over nitrite (CANON) process. Bioresource Technology, 210, 88–93.
14. Chen, T. K., Ni, C. H., & Chen, J. N. (2003). Nitrification?Denitrification of Opto-electronic Industrial Wastewater by Anoxic/Aerobic Process. Journal of Environmental Science and Health, Part A, 38(10), 2157–2167.
15. Chen, W. H., Chiang, Y. A., Huang, Y. T., Chen, S. Y., Sung, S., & Lin, J. G. (2017). International Biodeterioration & Biodegradation Tertiary nitrogen removal using simultaneous partial nitri fi cation , anammox and denitri fi cation ( SNAD ) process in packed bed reactor. International Biodeterioration & Biodegradation, 120, 36–42.
16. Coma, M., Rovira, S., Canals, J., & Colprim, J. (2013). Minimization of sludge production by a side-stream reactor under anoxic conditions in a pilot plant. Bioresource Technology, 129, 229–235.
17. Daverey, A., Su, S. H., Huang, Y. T., Chen, S. S., Sung, S., & Lin, J. G. (2013). Partial nitrification and anammox process: A method for high strength optoelectronic industrial wastewater treatment. Water Research, 47(9), 2929–2937.
18. Foladori, P., Velho, V. F., Costa, R. H. R., Bruni, L., Quaranta, A., & Andreottola, G. (2015). Concerning the role of cell lysis-cryptic growth in anaerobic side-stream reactors: The single-cell analysis of viable, dead and lysed bacteria. Water Research, 74(2), 132–142.
19. Hui, C., Guo, X., Sun, P., Lin, H., Zhang, Q., Liang, Y., & Zhao, Y.-H. (2017). Depth-specific distribution and diversity of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in upland-cropping soil under different fertilizer treatments. Applied Soil Ecology, 113, 117–126.
20. Isaka, K., Kimura, Y., Matsuura, M., Osaka, T., & Tsuneda, S. (2017). First full-scale nitritation-anammox plant using gel entrapment technology for ammonia plant effluent. Biochemical Engineering Journal, 122, 115–122.
21. Kim, S. G., Bae, H. S., & Lee, S. T. (2001). A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways. Archives of Microbiology, 176(4), 271–277.
22. Lin, X., & Wang, Y. (2017). Microstructure of anammox granules and mechanisms endowing their intensity revealed by microscopic inspection and rheometry. Water Research, 120, 22–31.
23. Liu, W., Yang, D., Chen, W., & Gu, X. (2017). High-throughput sequencing-based microbial characterization of size fractionated biomass in an anoxic anammox reactor for low-strength wastewater at low temperatures. Bioresource Technology, 231(1239), 45–52.
24. Semblante, G. U., Hai, F. I., Ngo, H. H., Guo, W., You, S. J., Price, W. E., & Nghiem, L. D. (2014). Sludge cycling between aerobic, anoxic and anaerobic regimes to reduce sludge production during wastewater treatment: Performance, mechanisms, and implications. Bioresource Technology, 155, 395–409.
25. Tanaka, K. (1994). 17060406020012787.pdf.
26. Ziglio, G., Andreottola, G., Barbesti, S., Boschetti, G., Bruni, L., Foladori, P., & Villa, R. (2002)., 460–468. https://doi.org/10.1016/S0043-1354(01)00228-7
27. TMAH 於好氧厭氧生物處理技術之應用 THE APPLICATION OF TMAH IN AEROBIC AND ANOXIC BIO-TREATMENT SYSTEM. (2013), 1–4.
28. Song, K.G., Cho, J., Cho, K.W., Kim, S.D. and Ahn, K.H. “ Characteristics of simultaneous nitrogen and phosphorus removal in a pilot-scale sequencing anoxic/anaerobic membrane bioreactor at various conditions.” Desalination (2010).
29. Tai-Ho Hu , Liang-Ming Whang, Pao-Wen Grace Liu , Yu-Ching Hung , Hung-Wei Chen ,Li-Bin Lin , Chia-Fu Chen , Sheng-Kun Chen , Shu Fu Hsu , Wason Shen , Ryan Fu , Romel Hsu . Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant,(2012).
30. Tansel, B. and N. Dizge, “Competitive effects and interactions during sorption of SMP fractions on activated carbon: Response surface approach for visualization of sorption profiles.” Journal of Environmental Management(2011).
31. Tarek A. Elmitwalli, Ralf Otterpohl, “Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.” ScienceDirct (2006).
32. Tian, Y., L. Chen, S. Zhang, and S. Zhang, “A systematic study of soluble microbial products and their fouling impacts in membrane bioreactors.” Chemical Engineering Journal(2011).
33. Yang, J. S., Yuan, D. X., & Weng, T. P. Pilot study of drinking water treatment with GAC, O3/BAC and membrane processes in Kinmen Island, Taiwan. Desalination(2010).
34. Yong Hu, Zhaoqian Jing, Yuta Sudo, Qigui Niu, Jingru Du, Jiang Wu, Yu-You Li, “ Effect of influent COD/SO42− ratios on UASB treatment of a synthetic sulfate-containing wastewater.” (2015).
35. Zeng, W., Li, L., Yang, Y. Y., Wang, X. D., Peng, Y. Z. Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic–anoxic–aerobic (A2O) process treating domestic wastewater. Enzyme and Microbial Technology(2011).
36. Tai-Ho Hu , Liang-Ming Whang, Pao-Wen Grace Liu , Yu-Ching Hung , Hung-Wei Chen ,Li-Bin Lin , Chia-Fu Chen , Sheng-Kun Chen , Shu Fu Hsu , Wason Shen , Ryan Fu , Romel Hsu . Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant,(2012).
37. Tansel, B. and N. Dizge, “Competitive effects and interactions during sorption of SMP fractions on activated carbon: Response surface approach for visualization of sorption profiles.” Journal of Environmental Management(2011).
38. Tarek A. Elmitwalli, Ralf Otterpohl, “Anaerobic biodegradability and treatment of grey water in upflow anaerobic sludge blanket (UASB) reactor.” ScienceDirct (2006).
39. Tian, Y., L. Chen, S. Zhang, and S. Zhang, “A systematic study of soluble microbial products and their fouling impacts in membrane bioreactors.” Chemical Engineering Journal(2011).
40. Yang, J. S., Yuan, D. X., & Weng, T. P. Pilot study of drinking water treatment with GAC, O3/BAC and membrane processes in Kinmen Island, Taiwan. Desalination(2010).
41. Yong Hu, Zhaoqian Jing, Yuta Sudo, Qigui Niu, Jingru Du, Jiang Wu, Yu-You Li, “ Effect of influent COD/SO42− ratios on UASB treatment of a synthetic sulfate-containing wastewater.” (2015).
42. Zeng, W., Li, L., Yang, Y. Y., Wang, X. D., Peng, Y. Z. Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic–anoxic–aerobic (A2O) process treating domestic wastewater. Enzyme and Microbial Technology(2011).
43. 中華民國行政院環境保護署環境檢驗所。
44. 中華民國行政院財政部賦稅署。
45. 中華民國 103 年環保署放流水標準
46. 國際海事組織防止船舶排氣污染規定之對策研究,2008年
47. 吳政龍 ,「氫氧化四甲基銨中毒」,國立成功大學醫學院-環境醫學研究所 ,2010年11月。
48. 套裝化薄膜生物反應器(MBR)在工業廢水處理系統的應用,中鼎工程(股)公司。
49. 莊順興,「污泥性質對薄膜生物反應槽積垢特性之研究」,廢水處理技術研討會,中華民國環境工程學會,2007年11月。
50. 林逸婷,「利用生物濾床處理方法處理高科技廢水效能探討」,碩士論文,國立中山大學環境工程研究所,2014年7月。
51. 黃筱涵,「以生物處理法降解含TMAH廢水之研究」,碩士論文, 國立臺灣大學工學院環境工程學研究所,2009年6月。
52. 陳依旻,「薄膜生物處理系統(MBR)中溶解性微生物產物(SMP)特性與影響之研究」,碩士論文,國立中央大學環境工程研究所,2011年12月。
53. 陳柏均,「光電產業TFT-LCD製程有機廢水生物降解機制及微生物生態變化之探討」,碩士論文,國立成功大學環境工程研究所,2010年6月。
54. 張冠甫,「厭氣生物處理技術低污泥、低耗能高效率之廢水處理技術」,工研院能環所,2010年2月。
55. 陳賢焜,「厭氧污泥處理光電水之TMAH及清潔劑」,中華民國環境工程學會2014廢水處理技術研討會,2009年11月。
56. 羅煌木,「科學園區污水處理廠中TMAH水質特性之研究」,中華民國環境工程學會2014廢水處理技術研討會,2013年11月。
57. 周信賢,「上流式厭氣污泥床反應器質傳/ 反應動力及溫度效應」,博士論文,國立成功大學環境工程學系,2004年10月。
58. 張智鈞,「低氮負荷操作之Anammox-MSBR生物除氮效能與菌相變動」,碩士論文,國立中興大學環境工程研究所,2015年6月。
59. 許淑娟,「厭氧氨氧化系統微生物組成及除氮效能之探討」,博士論文,中興大學環境工程研究所,2014年5月。
60. 劉福成,邱祈榮,蕭英倫,「林學辭典」,行政院農業委員會林務局,1997年12月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.131.13.194
論文開放下載的時間是 校外不公開

Your IP address is 3.131.13.194
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code