Responsive image
博碩士論文 etd-0615104-185722 詳細資訊
Title page for etd-0615104-185722
論文名稱
Title
串聯電池組之平衡放電
Balance Discharging for Series Connected Batteries
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-04
繳交日期
Date of Submission
2004-06-15
關鍵字
Keywords
平衡放電、串聯電池組、數位訊號處理器、返馳式轉換器
flyback converter, balance discharge, series-connected battery, DSP
統計
Statistics
本論文已被瀏覽 5688 次,被下載 4527
The thesis/dissertation has been browsed 5688 times, has been downloaded 4527 times.
中文摘要
由於串聯電池組中個別電池的充放電特性並不一致,導致電量不平衡,造成過度充電或過度放電,因而無法充分利用電池組的蓄電能力,甚至縮短了電池的壽命。雖然平衡充電已經有相當多的討論,但尚未見關於放電時電量平衡的研究。
本文針對串聯電池組提出以返馳式轉換器為基礎的電路架構與放電策略,在提供穩定輸出電壓外,同時具有平衡放電的功能。電路由一個多繞組輸入的返馳式變壓器所構成,串聯電池組中的每一顆電池都連接到變壓器一次側繞組,將能量轉移至二次側的負載。藉著對主動開關的控制,發展出數種不同的放電策略,期望能依照剩餘電量的多寡來決定各個電池供電給負載的比例,以儘速達到電量平衡的目的。此外,藉由對剩餘容量持續地監控,可將用盡儲能的電池終止放電,避免個別電池的過度放電。
本文採用數位訊號處理器(Digital Signal Processor, DSP)作為控制與運算的核心,隨時監測電池電壓與調整功率開關的導通率,以調節個別電池能量的釋放,達成平衡放電的目的,以及對負載端進行穩壓的功能。
本文以一個由四顆12V鉛酸電池串聯的電池組作為電路設計實例,藉以說明平衡放電電路的動作原理與工作模式,經由實際對三種不同平衡放電策略進行實驗,來驗證平衡策略與架構的可行性。
Abstract
Charge imbalance may happen to series-connected batteries during charging or discharging due to the discrepancies among batteries. The charge imbalance will cause some batteries being over-charged or over-discharged and is harmful to the battery cycle-life. Moreover, the storage capacity of the battery bank will not be effectively utilized. This thesis brings forth first the concept of charge equalization on discharging for battery banks.
Various control strategies are implemented on a flyback converter with a multi-input transformer to provide the balance discharging function as well as output voltage regulation. Each battery of the battery bank is connected to a primary winding of the transformer via an active power switch. The batteries transfer their energy to load according to the residual energy in each battery. Meanwhile, by continually monitoring battery voltages, exhausted batteries can be disconnected to avoid being over-discharged.
A battery bank with four series-connected lead-acid batteries is used as an example to illustrate the operation of the balance discharging circuit. The complicated calculations and precise control are accomplished by a digital signal processor (DSP). The experimental results advocate the applicability of the discharging circuit and control strategies.
目次 Table of Contents
摘要
Abstract
目錄
圖表目錄
第一章 緒論
1-1 研究背景
1-2 研究動機與目的
1-3 本文大綱
第二章 平衡放電
2-1 鉛酸電池損壞的原因
2-2 串聯電池組電量平衡及其影響
2-3 平衡放電的方式與輸出電壓的調整
第三章 平衡放電電路
3-1 電路架構
3-2 電路的操作方式
3-3 電路參數設計
第四章 電路的控制及平衡放電策略
4-1電池電壓的量測
4-2 控制電路
4-2-1 電壓偵測電路
4-2-2驅動電路
4-3 平衡放電策略
4-3-1 策略一
4-3-2 策略二
4-3-3 策略三
4-4 軟體規劃
第五章 實驗量測
5-1 電路參數設定
5-2 實驗量測
5-2-1 策略一的平衡放電
5-2-2 策略二的平衡放電
5-2-3 策略三的平衡放電
5-2-4 輸出電壓量測
第六章 結論與未來研究方向
參考文獻
參考文獻 References
[1] C. C. Chan and K. T. Chau, “An Overview of Electric Vehicles – Challenges and Opportunities,” Proceedings of the IEEE IECON 22nd International Conference, Vol. 1, August 1996, pp. 1-6.
[2] H. Oman, “Battery Developments that will make Electric Vehicles Practical,” IEEE Aerospace & Electronics Systems Magazine, Vol. 1, No. 8, August 2000, pp. 11-21.
[3] H. Oman, “Making Batteries Last Longer,” IEEE Aerospace & Electronics Systems Magazine, Vol. 14, No. 9, September 1999, pp. 19-21.
[4] T. B. Gage, “Lead-Acid Batteries: Key to Electric Vehicle Commercialization – Experience with Design, Manufacture, and Use of EVs,” 15th Battery Conference on Applications and Advances, January 2000, pp .217-222.
[5] B. Dickinson and J. Gill, “Issues and Benefits with Fast Charging Industrial Batteries,” 15th Battery Conference on Applications and Advances, January 2000, pp. 223-229.
[6] C.C. Chan, “An Overview of Electric Vehicle Technology,” Proceedings of the IEEE, Vol. 81, No. 9, September 1993, pp. 1202-1213.
[7] P. T. Krein and R. S. Balog, “Life Extension Through Charge Equalization of Lead-Acid Batteries,” 24th International Telecommunications Energy Conference INTELEC 2002, September/October 2002, pp. 516-523.
[8] P. T. Krein, S. West, and C. Papenfuss, “Equalization Requirements for Series VRLA Batteries,” The 6th Annual Battery Conference on Applications and Advances, January 2001, pp. 125-130.
[9] S. West and P. T. Krein, “Equalization of Valve-Regulated Lead-Acid Batteries: Issues and Life Test Results,” 22nd International Telecommunications Energy Conference INTELEC 2000, September 2000, pp. 439-446.
[10] H. Schmidt and C. Siedle, “The Charge Equalizer – A New System to Extend Battery Lifetime in Photovoltaic Systems, U.P.S. and Electric Vehicles,” 15th International Telecommunications Energy Conference INTELEC 1993, Vol. 2, September 1993, pp. 146-151.
[11] H. Shibata, S. Taniguchi, K. Adachi, K. Yamasaki, G. Ariyoshi, K. Kawata, K. Nishijima, and K. Harada, “Management of Serially-Connected Battery System Using Multiple Switches,” 4th International Conference on Power Electronics and Drive Systems PEDS 2001, Vol. 2, October 2001, pp. 508-511.
[12] T. Gottwald, Z. Ye, T. stuart, “Equalization of EV and HEV Batteries with a Ramp Converter,” IEEE Transactions on Aerospace and Electronic Systems, Vol.33, No.1, January 1997, pp. 307-311.
[13] B. Lindemark, “Individual Cell Voltage Equalizers (ICE) for Reliable Battery Performance,” 13th International Telecommunications Energy Conference INTELEC 1991, November 1991, pp. 196-201.
[14] C. Pascual and P. T. Krein, “Switched Capacitor System for Automatic Series Battery Equalization,” 12th Applied Power Electronics Conference and Exposition APEC 1997, Vol. 2, February 1997, pp. 848-854.
[15] G. A. Kobzev , “Switched-Capacitor Systems for Battery Equalization,” Modern Techniques and Technology MTT 2000, March 2000, pp. 57 -59.
[16] H. Sakamoto, K. Murata, K. Nishijima, K. Harada, S. Taniguchi, K. Yamasaki, and G.. Ariyoshi, “Balanced Charging of Series Connected Battery Cells,” Telecommunications Energy Conference INTELEC 1998, October 1998, pp. 311-315.
[17] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, “Design Considerations for Charge Equalization of an Electric Vehicle Battery System,” EEE Transactions on Industry Applications, Vol. 35, No. 1, January/February 1999, pp. 28-35.
[18] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, “Charge Equalization for Series Connected Battery Strings,” IEEE Transactions on Industry Applications, Vol. 31, No. 3, May/June 1995, pp. 562-568.
[19] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan, and D. W. Novotny, “Charge Equalization for an Electric Vehicle Battery System,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 1, January 1998, pp. 235-245.
[20] N. H. Kutkut, “Nondissipative Current Diverter Using a Centralized Multi-winding Transformer,” 28th IEEE Power Electronics Specialists Conference PESC 1997, Vol. 1, June 1997, pp. 648-654
[21] N. H. Kutkut, “A Modular Nondissipative Current Diverter for EV Battery Charge Equalization,” 13rd Applied Power Electronics Conference and Exposition APEC 1998, Vol. 2, February 1998, pp. 686-690.
[22] S. T. Hung, Douglas C. Hopkins, and Charles R. Mosling, “Extension of Battery Life via Charge Equalization Control,” IEEE Transactions On Industrial Electronics, Vol. 40, No. 1, February 1993, pp. 96-104.
[23] D. C. Hopkins, Charles R. Mosling, and Stephen T. Hung, “Dynamic Equalization During Charging of Serial Energy Storage Elements,” IEEE Transactions On Industry Applications, Vol. 29, No. 2, March/April 1993, pp. 363-368.
[24] M. Tang and T. Stuart, “Selective Buck-Boost Equalizer for Series Battery Packs,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 1, January 2000, pp. 201-211.
[25] Z. Ye and T. A. Stuart, “Sensitivity of a Ramp Equalizer for Series Batteries,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 4, October 1998, pp. 1227-1236.
[26] Y. S. Lee, M. W. Chen, K. L. Hsu, J. Y. Du, and C. F. Chuang, “Cell Equalization Scheme with Energy Transferring Capacitance for Series Connected Battery Strings,” IEEE Conference on Computers, Communications, Control and Power Engineering TENCON 2002, Vol.3, October 2002, pp. 2042-2045.
[27] C. Karnjanapiboon, Y. Rungruengphalanggul, and I. Boonyaroonate, “The Low Stress Voltage Balance Charging Circuit for Series Connected Batteries Based on Buck-Boost Topology,” International Symposium on Circuits and Systems ISCAS 2003, Vol. 3, May 2003, pp. 284-287.
[28] C. S. Moo, Y. C. Hsieh, I S. Tsai, and J. C. Cheng, “Dynamic Charge Equalization for Series-Connected Batteries,” IEE Proceedings Electric Power Application, Vol. 150, No. 5, September 2003, pp. 501-505.
[29] C. S. Moo, Y. C. Hsieh, and I S. Tsai, “Charge Equalization for Series-Connected Batteries,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 2, April 2003, pp. 704-710.
[30] B. K. Mahato, “Mechanism of Capacity Degradation of a Lead-Acid Battery,” 6th Battery Conference on Applications and Advances, January 1991, pp. 57-65.
[31] R. J. Ball, R. Kurian, R. Evans, and R. Stevens, “Failure mechanisms in Value Regulated Lead/Acid Batteries for Cyclic Applications,” Journal of Power Sources, Vol. 109, No. 1, June 2002, pp. 189-202.
[32] C. S. C. Bose and G. W. Mathiesen, “Gas Evolution, Recombination and Grid Corrosion in a VRLA Battery Under High Temperature Operating Conditions,” 19th International Telecommunications Energy Conference INTELEC 1997, October 1997, pp. 13-17.
[33] J. P. Gun, J. N. Fiorina, M. Fraisse, and H. Mabboux, “Increasing UPS Battery Life: Main Failure Modes, Charging and Monitoring Solutions,”19th International Telecommunications Energy Conference INTELEC 1997, October 1997, pp. 389-396.
[34] R. J. Ball, R. Evans, M. Deven, and R. Stevens, “Characterisation of Defects Observed Within the Positive Grid Corrosion Layer of the Valve Regulated Lead/Acid Battery,” Journal of Power Sources, Vol. 103, No. 2, January 2002, pp. 207-212.
[35] D. Berndt, “Valve-Regulated Lead-Acid Batteries,” Journal of Power Sources, Vol. 95, No.1-2, March 2001, pp. 2-12.
[36] J. B. Olson and E. D. Sexton, “Charging VRLA Batteries in Cycling Applications,” 14th Battery Conference on Applications and Advances, January 1999, pp. 155-159.
[37] H. Gu, “Mathematical Modeling in Lead-Acid Battery Development,” 6th Annual Battery Conference on Applications and Advances, January 1991, pp. 47-56.
[38] 徐曼珍,閥控式密封鉛蓄電池及其在通訊中的應用,人民郵電出版社,1997年9月,第一版。
[39] F. Kramm, “Influence of Temperature and Charging Voltage on the Endurance of VRLA-Batteries,” 19th International Telecommunications Energy Conference INTELEC 1997, October 1997, pp. 25-28.
[40] K. R. Bullock, P. K. Ng, J. L. Valdes, and R. A. Holland, “Defining the Life of Valve-Regulated Lead-Acid Batteries: A New Approach to Accelerated Testing,” 17th International Telecommunications Energy Conference INTELEC 1995, October/November, pp. 78-85.
[41] Y. Reynier, R. Yazami, and B. Fultz, “Thermodynamics and Kinetics of Self-Discharge in Graphite-Lithium Electrodes,” The 17th Annual Battery Conference on Applications and Advances, January 2002, pp.145-150.
[42] “Lead-Acid Batteries,” Hans Bode, John Wiley & Sons, 1977.
[43] J. Garche, A Jossen, and H. D
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code