Responsive image
博碩士論文 etd-0615106-230734 詳細資訊
Title page for etd-0615106-230734
論文名稱
Title
大鼠週邊神經病變之電生理研究:傳統神經傳導與運動神經根磁波刺激之比較
Electrophysiological Studies on Peripheral Neuropathy in Rats:Comparison of Conventional Nerve Conduction Studies and Magnetic Motor Root Stimulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
40
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-05-24
繳交日期
Date of Submission
2006-06-15
關鍵字
Keywords
磁波
magnetic
統計
Statistics
本論文已被瀏覽 5668 次,被下載 2792
The thesis/dissertation has been browsed 5668 times, has been downloaded 2792 times.
中文摘要
週邊神經常因壓迫、牽拉或外傷性撕裂而受傷,影響感覺與神經功能,用以評估神經損傷的方法包括分子生物學中許多標記的測量、病理組織切片、動物動作行為模式、以及電生理評估。本研究欲以傳統的電刺激及新興的磁波刺激(magnetic stimulation) 評估大鼠週邊神經損傷並比較其結果。
本研究將大鼠分成三組: 第一組為對照組(n = 8); 第二組採用坐骨神經綁紮 (n = 8),對大鼠左側坐骨神經進行綁紮造成神經損傷;第三組利用丙烯醯胺(Acrylamide) (n = 8),給予腹膜內注射丙烯醯胺(50 mg/kg) 造成神經損傷,每週二次,共四週。電生理評估的時點為術前三天、術後每隔1週共4週,項目包括坐骨神經(至脛前肌、腓腸肌)的運動神經傳導速度與複合神經電位振幅大小、H反射、F波、磁波刺激產生運動誘發電位振幅大小及潛時(latency)、肌電圖訊號(脛前肌、腓腸肌)。
研究結果顯示電刺激與磁波刺激在兩組神經損傷模式中均可見到電位振幅大小明顯下降,磁波刺激所得的電位振幅約為電刺激之76-85%。至於潛時並未在神經損傷模式中明顯延長,因為其波形會受到電導體傳導(volume conduction)干擾,導致判讀數據易產生誤差,磁波刺激所得的潛時約較電刺激延長0.596±0.258 ms。由於大鼠後肢距離短,無法以磁波刺激檢查神經傳導速度、H反射與F波。反之,電刺激評估中呈現神經損傷老鼠之神經傳導速度變慢、H反射與F波潛時延長或消失。此外,肌電圖可明顯偵測到神經損傷老鼠的去神經自發性電位。綜言之,腰薦神經根磁波刺激為非侵入性,使用上有其便利,但需累積更多數據與經驗,才能成為可信賴的評估工具。
Abstract
Numerous mechanisms contribute to peripheral nerve injuries such as chemical intoxication, compression, stretching and avulsion, which usually result in severe damage to the sensory and motor functions. The current approaches for evaluating nerve regeneration include expression analysis of molecular markers, histological analysis, behavior testing and electrophysiological studies. The aim of this study is to compare the diagnostic efficacy using the recently developed magnetic stimulation approach with that of conventional electrical stimulation method in different models of peripheral neuropathy and to compare in terms of latency and amplitude of the evoked response by electrical and magnetic stimulation.
Adult male Sprague Dawley rats (250-300 g, n = 24) were divided into three groups: (1) control group, (2) sciatic nerve ligation group and (3) acrylamide intoxication group. The electrophysiological studies were carried out 3 days before ligation and every 7 days after ligation for 4 weeks. The measurements included amplitude and onset latency of maximal compound nerve action potential (CMAP) in branches of sciatic nerve (nerves to the gastrocnemius, tibialis anterior), motor nerve conduction velocity, H-reflex, F-wave, amplitude and onset latency of motor evoked potential by lumbosacral motor root magnetic stimulation, and denervation by electromyography (gastrocnemius, tibialis anterior).
The results from studies using magnetic and electrical stimulation showed prominent reduction of CMAP amplitude in rats of sciatic nerve ligation and acrylamide intoxication group. The CMAP amplitude measured by magnetic stimulation was 76~85% of that by electrical stimulation. By either magnetic stimulation or electrical stimulation, there was no significant difference in the mean onset latency of CMAP between control and neuropathy groups. Volume conduction accounts for the interference of waveform and error is inevitable. Because of the short distance of hind limb of the rat, the nerve conduction velocity (NCV), H-reflex and F-wave could not be determined using magnetic stimulation. In contrast, electrophysiological analysis by electrical stimulation revealed slowed NCV, prolonged or absent H-reflex and F-wave in animals of neuropathy groups. Electromyography showed prominent denervation potentials over the sampling muscles in both models.
In conclusion, magnetic stimulation of lumbosacral motor root is non-invasive and convenient. However, further improvement and establishment of basic parameters are required to facilitate a reliable tool in evaluation of peripheral nerve injury.
目次 Table of Contents
Abstract (Chinese)--------------------------- 1
Abstract (English) -------------------------- 2
Background----------------------------------- 4
Introduction of Magnetic stimulation--------- 4
Conventional Nerve Conduction Studies ------- 5
Purpose ------------------------------------- 7
Materials and Methods ----------------------- 8
Animals-------------------------------------- 8
Peripheral nerve injury models--------------- 8
Sciatic nerve ligation model----------------- 8
Acrylamide intoxication model---------------- 8
Electrophysiological measurements------------ 9
Electrical stimulation----------------------- 9
Magnetic stimulation------------------------- 9
Statistical analysis-------------------------10
Results ------------------------------------- 11
Morphology of CMAP -------------------------- 11
Comparison of amplitude --------------------- 11
Comparison of onset latency ----------------- 11
Nerve Conduction Velocity-------------------- 11
H-reflex ------------------------------------ 12
F-wave -------------------------------------- 12
Electromyography ---------------------------- 12
Discussion----------------------------------- 13
Morphology of CMAP -------------------------- 13
Comparison of amplitude --------------------- 14
Comparison of onset latency ----------------- 15
Nerve Conduction Velocity-------------------- 15
H-reflex ------------------------------------ 15
F-wave -------------------------------------- 15
Electromyography ---------------------------- 16
Conclusion ---------------------------------- 18
References ---------------------------------- 19
Tables -------------------------------------- 22
Table 1 Mean values of CMAP amplitude ------- 22
Table 2 Mean values of CMAP latency --------- 23
Figures
Figure 1 Different kinds of magnetic stimulators --24
Figure 2 Positioning of stimulators ---------------25
Figure 3 Morphology of CMAP------------------------26
Figure 4 Changes in CMAP amplitude by magnetic stimulation ------------- 27
Figure 5 Changes in CMAP amplitude by electrical stimulation ------------- 28
Figure 6 Comparison of CMAP amplitude ------------29
Figure 7 Changes in CMAP latency by magnetic stimulation ---------------- 30
Figure 8 Changes in CMAP latency by electrical stimulation ---------------- 31
Figure 9 Comparison of CMAP latency ------------- 32
Figure10 Changes in nerve conduction velocity ----33
Figure 11 Normal F-wave and H-reflex in control group -- 34
Figure 12 Changes in latency of H-reflex -------------- 35 Figure 13 Changes in latency of F-wave --------------- 36
Figure 14 Denervation grading in Electromyography ---- 37
參考文獻 References
Behbehani M M, Dollberg-Stolik O. Partial sciatic nerve ligation results in an enlargement of the receptive field and enhancement of the response of dorsal horn neurons to noxious stimulation by an adenosine agonist. Pain 1994; (58): 421-428.
Benecke R. Magnetic stimulation in the assessment of peripheral nerve disorders. Baillieres Clin Neurol 1996; (5): 115-128.
Bischoff C, Riescher H, Machetanz J, Meyer B U, Conrad B. Comparison of various coils used for magnetic stimulation of peripheral motor nerves: physiological considerations and consequences for diagnostic use. Electroencephalogr Clin Neurophysiol 1995; (97): 332-340.
Cameron N E, Cotter M A, Harrison J. Effect of diabetes on motor conduction velocity in different branches of the rat sciatic nerve. Exp Neurol 1986; (92): 757-761.
Chokroverty S, Spire JP, DiLullo J. Magnetic stimulation of the human peripheral nerve system. Magnetic stimulation in clinical neurophysiology.Boston: Butterworth , 249-295. 1990.
Chuang T Y, Huang M C, Chen K C, Chang Y C, Yen Y S, Lee L S, Cheng H. Forelimb muscle activity following nerve graft repair of ventral roots in the rat cervical spinal cord. Life Sci 2002; (71): 487-496.
Cliffer K D, Tonra J R, Carson S R, Radley H E, Cavnor C, Lindsay R M, Bodine S C, DiStefano P S. Consistent repeated M- and H-Wave recording in the hind limb of rats. Muscle Nerve 1998; (21): 1405-1413.
Cros D, Gominak S, Shahani B, Fang J, Day B. Comparison of electric and magnetic coil stimulation in the supraclavicular region. Muscle Nerve 1992; (15): 587-590.
Daube JR. AAEM Minimonograph #11: Needle examination in clinical electromyography. Muscle Nerve 1991; (14): 685-700.
Deeb S, Moutaery K, Arshaduddin M, et al. Attenuation of acrylamide-induced neurotoxicity in diabetic rats. Neurotoxicol Terato 2000;(22):247-253.
Kamida T, Fujiki M, Hori S, Isono M. Conduction pathways of motor evoked potentials following transcranial magnetic stimulation: a rodent study using a "figure-8" coil. Muscle Nerve 1998; (21): 722-731.
Kimura J. Electrodiagnosis in Diseases of Nerve and Muscles: Principles and Practice. Oxford University Press, New York 2001.
Kolin A, Brill N Q, Broberg P J. Stimulation of irritable tissues by means of an alternating magnetic field. Proc Soc Exp Biol Med 1959; (102): 251-253.
Lin V W, Hsiao I, Kingery W S. High intensity magnetic stimulation over the lumbosacral spine evokes antinociception in rats. Clin Neurophysiol 2002; (113): 1006-1012.
Lin V W, Hsiao I N, Dhaka V. Magnetic coil design considerations for functional magnetic stimulation. IEEE Trans Biomed Eng 2000; (47): 600-610.
LoPachin R M. The changing view of acrylamide neurotoxicity. Neurotoxicology 2004; (25): 617-630.
Luft A R, Kaelin-Lang A, Hauser T K, Cohen L G, Thakor N V, Hanley D F. Transcranial magnetic stimulation in the rat. Exp Brain Res 2001; (140): 112-121.
MacDonell R A, Cros D, Shahani B T. Lumbosacral nerve root stimulation comparing electrical with surface magnetic coil techniques. Muscle Nerve 1992; (15): 885-890.
Oge A E, Boyaciyan A, Gurvit H, Yazici J, Degirmenci M, Kantemir E. Magnetic nerve root stimulation in two types of brachial plexus injury: segmental demyelination and axonal degeneration. Muscle Nerve 1997; (20): 823-832.
Oh S. Magnetic and HVLI eletrical stimulation tests. In: Clinical electromyography: nerve conduction studies. Philadelphia: Lippincott Williams & Wilkins, 2003; 3rd: 504-550.
Olney R K, So Y T, Goodin D S, Aminoff M J. A comparison of magnetic and electrical stimulation of peripheral nerves. Muscle Nerve 1990; (13): 957-963.
Polson M J, Barker A T, Freeston I L. Stimulation of nerve trunks with time-varying magnetic fields. Med Biol Eng Comput 1982; (20): 243-244.
Pradat P F, Kennel P, Naimi-Sadaoui S, Finiels F, Orsini C, Revah F, Delaere P, Mallet J. Continuous delivery of neurotrophin 3 by gene therapy has a neuroprotective effect in experimental models of diabetic and acrylamide neuropathies. Hum Gene Ther 2001; (12): 2237-2249.
Preston D, Shapiro B. Basic nerve conduction studies. In: Electromyography and neuromuscular disorders: Clinical-electrophysiologic correlations. Philadelphia: Elsevier, 2005; 2nd: 25-43.
Ravnborg M, Blinkenberg M, Dahl K. Significance of magnetic coil position in peripheral motor nerve stimulation. Muscle Nerve 1990; (13): 681-686.
Reutens D C, MacDonell R A, Berkovic S F. The influence of changes in the intensity of magnetic stimulation on coil output. Muscle Nerve 1993; (16): 1338-1341.
Roth B.J, Turner R., Cohen L.G., Hallett M. New coil design for magnetic stimulation with improved focality. Mov Disord 1990; (5): 114.
Saita K, Ohi T, Hanaoka Y, Furukawa S, Furukawa Y, Hayashi K, Matsukura S. Effects of 4-methylcatechol, a stimulator of endogenous nerve growth factor synthesis, on experimental acrylamide-induced neuropathy in rats. Neurotoxicology 1995; (16): 403-412.
Sun S J. Changes in magnetic coil orientation affect the stimulation effects of human peripheral nerve. Fukuoka Igaku Zasshi 1996; (87): 66-76.
Sun S J, Tobimatsu S, Kato M. The effect of magnetic coil orientation on the excitation of the median nerve. Acta Neurol Scand 1998; (97): 328-335.
Ugawa Y. Physiological approach to peripheral neuropathy. Conventional nerve conduction studies and magnetic motor root stimulation. Rinsho Shinkeigaku 2004; (44): 986-990.
Weber M, Eisen A A. Magnetic stimulation of the central and peripheral nervous systems. Muscle Nerve 2002; (25): 160-175.
Werhahn K J, Fong J K, Meyer B U, Priori A, Rothwell J C, Day B L, Thompson P D. The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. Electroencephalogr Clin Neurophysiol 1994; (93): 138-146.
Zwarts M J. Magnetic stimulation of the peripheral nervous system: local versus generalized disorders. Electromyogr Clin Neurophysiol 1998; (38): 309-316.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code