Responsive image
博碩士論文 etd-0615113-163433 詳細資訊
Title page for etd-0615113-163433
論文名稱
Title
具氧化鈦-氧化鋁閘極氧化層磷化銦蕭特基穿隧能障金氧半電晶體元件之研製與特性分析
Fabrication and Characterization of InP Schottky Tunneling Barrier MOSFET with TiO2/Al2O3 Gate Oxides
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
136
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-11
繳交日期
Date of Submission
2013-07-15
關鍵字
Keywords
磷化銦、原子層沉積法、二氧化鈦、蕭特基穿隧能障金氧半場效元件
InP, ALD, Schottky tunneling barrier MOSFET, TiO2
統計
Statistics
本論文已被瀏覽 5741 次,被下載 0
The thesis/dissertation has been browsed 5741 times, has been downloaded 0 times.
中文摘要
本研究利用原子層沉積系統 (ALD) 沉積氧化鋁和氧化鈦薄膜於磷化銦基板上,作為蕭特基穿隧能障金氧半場效電晶體元件 (Schottky tunneling barrier MOSFET) 之閘極氧化層。首先,對於現有氧化鈦薄膜做品質改善的研究,使用原子沉積法的氧化鈦與氧化鋁的雙層結構來改善單層氧化鈦氧化層。使用雙層結構可藉由氧化鋁自我清潔能力使得氧化層與基板界面得到更佳的改善,使漏電流數值降至1.49 × 10-8 和 2.03 × 10-6 A/cm2 at ± 2 MV/cm。為了使介面能有更好的特性,我們使用硫化銨溶液減少在基板表面上的原生氧化層來達到提高特性。因此蕭特基能障才能免予費米能接釘札影響。另外,為了提高汲極電流及降低在汲極與源極的接觸電阻。分別研究三種加了介電層結構的蕭特基穿隧二極體來作為汲極與源極區域,在這三種結構中發現加了氧化鋁與氧化鈦雙層結構在逆向偏壓下電流來的最大,其電流為7.27 mA/cm2,且比單純是金半接面的蕭特基二極體的電流來的大許多。另外發現加了氧化鋁與氧化鈦雙層結構能有效降低接觸電阻,與金半結構的接觸電阻比較小了五個等級,關於蕭特基穿隧能障金氧半場效電晶體元件的電性量測,其汲極電流為 30.2 A/m在汲極電壓3伏閘極電壓3伏時。而在汲極電流-汲極電壓特性圖中的線性區,可以看到由於接觸電阻降低其次臨界擺幅變小,轉導值為 10 mS/mm,移動率為3770 mm2/V-s 。比較蕭特基穿隧能障金氧半場效電晶體與蕭特基能障金氧半場效電晶體,在特性上最大的差異在於蕭特基穿隧能障金氧半場效電晶體降低了接觸電阻進而提高了汲極電流,相對的轉導與載子移動也隨著提高。
Abstract
In this study, the thin titanium oxide (TiO2) film and aluminum oxide (Al2O3) films which was used as gate oxides of InP Schottky tunneling barrier MOSFET were deposited on InP substrate that was prepared by atomic layer deposition (ALD). First, we made of improvement quality for existing titanium oxides, using double stack of titanium oxide (TiO2) and aluminum oxide (Al2O3) by ALD can be used to improve single layer of TiO2. Al2O3 of ALD has self-cleaning which could improve interface quality between oxide and substrate, the leakage current densities can reach 3.1 × 10-9 and 3.3 × 10-7 A/cm2 at ± 2 MV/cm. In order to having good quality of interface, the (NH4)2S solution is a good method to reduce surface native oxide on InP. Therefore, Schottky barrier will not be influenced by Fermi level pinning with fewer native oxide. Otherwise, improvement of drain current and reduction of contact resistance in source/drain regions are our purposes. So, we investigate three structures of Schottky tunneling barrier diodes by inserting dielectrics as source/drain regions. From my experiments can be found the double layers of Al2O3/TiO2 has the highest current which is 7.27 mA/cm2 at reverse bias in these three structures. The current of double layer dielectrics Schottky tunneling barrier diode is higher than general Schottky diode (Al/InP) for five orders. The contact resistance in double dielectrics layers is the lowest in four structures. For the electrical measurements, the transconductance and mobility are 10 mS/mm and 3770 mm2/V-s, respectively. It has low subthreshold swing in ID-VG linear region. Compare Schottky barrier MOSFET and Schottky tunneling barrier MOSFET, the most difference is the contact resistance remarkable reduction and improvement of drain current. Therefore, the transconductance and the mobillty are remarkable improvement.
目次 Table of Contents
ACKNOWLEDGMENT.........................................II
中文摘要 ........................................III
ABSTRACT ........................................IV
CONTENTS ........................................VI
LIST OF FIGURES........................................IX
LIST OF TABLES ........................................XIV
Chapter 1 Introduction ........................................1
1-1 Developments in gate dielectric ........................................1
1-2 Properties of TiO2 ........................................3
1-3 Comparison of deposition methods of TiO2........................................4
1-4 Advantages of ALD........................................5
1-5 Drawback of TiO2 for MOSFETs ........................................6
1-6 Drawbacks of SB on III-V compound semiconductors........................................7
1-7 Mechanism and the structure model of InP with sulfur treatment........................................10
1-8 Properties of Al2O3........................................10
1-9 ALD-TiO2/Al2O3 on (NH4)2S treated III-V compound semiconductor structure........................................11
1-10 Principle of Schottky tunneling barrier........................................14
1-11 III-V Schottky tunneling barrier MOSFET........................................14
1-11-1 Operation principle for the n-STBMOSFET in channel........................................16
Chapter 2 Experiments........................................29
2-1 Al2O3 and TiO2 are prepared by ALD........................................29
2-1-1 CVD principle........................................29
2-1-2 Deposition system of ALD ........................................30
2-1-3 Properties of source materials ........................................31
2-2 Structure procedures and film depositions ........................................32
2-2-1 III-V wafer cleaning and sulfidation procedures........................................32
2-2-2 Preparation of Al2O3/TiO2 stack films........................................33
2-2-2-1 Growth parameters of ALD-TiO2 film........................................33
2-2-2-2 Growth parameters of ALD-Al2O3 film ........................................33
2-2-3 Al metal and In-Zn alloy cleaning processes........................................33
2-2-4 Electrodes fabrication........................................34
2-2-5 Preparations of Al/Al2O3/InP Schottky tunneling barrier diode with (NH4)2S treatment........................................34
2-2-6 Preparations of Al/TiO2/InP Schottky tunneling barrier diode with (NH4)2S treatment........................................35
2-2-7 Preparations of Al/Al2O3/TiO2/InP Schottky tunneling barrier diode with (NH4)2S treatment 35
2-3 Characterization........................................36
2-3-1 Physical properties........................................36
Chapter 3 MOS with Various Gate Structures Characteristics of ALD-TiO2 and ALD-TiO2/Al2O3 on S-InP........................................50
3-1 TEM cross section of TiO2/Al2O3/S-InP structure........................................50
3-2 I-V characteristics of TiO2/Al2O3 stacked dielectrics on (NH4)2S treated on InP ........................................50
3-3 C-V characteristics of Al2O3/TiO2 stacked dielectrics on (NH4)2S treated on InP........................................51
3-4 Tentative conclusion........................................53
Chapter 4 Characteristics of Source/Drain in Schottky Tunneling Barrier Diodes........................................58
4-1 Electrical characteristics of Al/S-InP diode ........................................58
4-2 Electrical characteristics of Al/Al2O3/S-InP diode........................................58
4-3 Electrical characteristics of Al/TiO2/S-InP diode........................................60
4-4 Electrical characteristics of Al/Al2O3/TiO2/S-InP diode........................................61
4-5 Electrical characteristics of contact resistance with Schottky tunneling barrier oxides ........................................62
4-6 Tentative conclusion 63
Chapter 5 Electrical Characteristics of Enhancement-mode n-Channel InP Schottky Tunneling Barrier MOSFET 84
5-1 Fabrication process of enhancement-mode n-channel Schottky tunneling barrier MOSFET with ALD- TiO2 /Al2O3 as gate oxides on S-InP........................................84
5-2 Electrical characteristics of enhancement-mode n-channel Schottky tunneling barrier MOSFET with ALD-TiO2/Al2O3 as gate oxides on S-InP........................................85
5-3 Tentative conclusion........................................87
Chapter 6 Conclusion........................................104
References................................. 106
Publication List........................... 118
參考文獻 References
[1] http://www.intel.com/technology/mooreslaw/
[2] R. Paily, A. DasGupta, N. DasGupta, P. Bhattacharya, P. Misra, T. Ganguli, L. Kukreja, A. K. Balamurugan, S. Rajagopalan, A. K. Tyagi, “Pulsed laser deposition of TiO2 for MOS gate dielectric, “Applied Surface Science, 187, p. 297, 2002.
[3] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, p 5243, 2001.
[4] J. J. Sullivan, and B. Han, “Metalorganic chemical vapor deposition of titanium oxide for microelectronics applications,” J. Mater. Res., 16, pp.1838-1849, 2001.
[5] G.D. Wilk, R.M. Wallace, and J.M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, pp.5243, 2001.
[6] J. Robertson, “Electronic structure and band offsets of high dielectric constant gate oxides,” MRS Bulletin Mar, 217, 2002.
[7] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995.
[8] G. V. Samsonov: The Oxide Handbook, (IFI/Plenum, New York), p.316, 1973.
[9] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G Schmid, “Structural and electrical characterization of TiO2 grown from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambients,” J. Vac. Sci. & Technol., vol. B14, pp. 1706-1711, 1996.
[10] M. A. Butler, and D. S. Ginley, “Principles of photoelectrochemical solar-energy conversion,” J. Mater. Sci., vol. 15, pp 1-19, 1980.
[11] T. Carlson, and G. L. Griffin, “Photo oxidation of methanol using V2O5/TiO2 and
MoO3/TiO2 surface oxide monolayer catalysts,” J. Phys. Chem., vol. 90,
pp.5896-5900, 1986.
[12] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical characterization of
SiO2-TiO2 thin-film with graded refractive-index profiles,” J. Jpn. Inst. Metals, vol. 62, pp. 1069-1074, 1998.
[13] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive-index profiles,” Appl. Phys. Lett., vol. 72, pp. 3264-3266, 1998.
[14] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin-film by PECVD for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[15] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye-sensitized nanocrystalline TiO2 solar-cell having a high solar-energy conversion efficiency up to 5.6-percent” Chem. Commun., pp. 569-570, 2001.
[16] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and
M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar
optical wave-guides” Thin Solid Film, vol. 323, pp. 59-62, 1998.
[17] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-film with grating coupling,” J. Raman Spectrosc., vol. 27, pp. 897-900, 1996.
[18] S. D. Mo, and W. Y. Ching, “Electronic and optical-properties of three phases of titanium dioxide rutile, anatase and brookite,” Phys. Rev. B, vol. 51, pp.13023-13032,1995.
[19] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “ Effects of Thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 film on structural and optical properties,” Appl. Phys. A, vol. 73, pp. 595-600, 2001.
[20] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results,” Chem. Rev., vol. 95, pp. 735-758, 1995.
[21] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical-properties of TiO2 anatase thin-film,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[22] N. Daude, C. Goutm, and C. Jouanin, “Electronic band structure of titanium dioxide,” Phys. Rev. B, vol. 15, pp. 3229-3235, 1977.
[23] G. S. Brady, and H. R. Clauser: Materials Handbook, 13th ed. (McGraw-Hill, New York 1991)
[24] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection,” J. Electroanalytical Chem., vol. 428, pp. 25-32, 1997.
[25] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura and T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Film, vol. 424, pp.224-228, 2003.
[26] National Institute of Standards and Technology, Phase Equilibrium Diagrams, ver.2.1, The American Ceramic Society, Westerville, 1998, Fig. 4258.
[27] J. M. Criado, C. Real, and J. Soria, “Study of mechanochemical phase transformation of TiO2 by EPR effect of phosphate,” Solid State Ionics, vol. 32, pp. 461-465, 1989.
[28] R. D. Shannon, and J. A. Pask,” Kinetics of the Anatase-Rutile Transformation” , J. Am. Ceram. Soc., vol. 48, p. 391,1965.
[29] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,” Mater. Chem. Phys., vol. 77, pp. 744-750, 2003.
[30] O. Harizanov, and A. Harizanova, “Development and investigation of sol-gel solutions for the formation of TiO2 coatings,” Sol. Energy Mater. Sol. Cells, vol. 63, pp. 185-195, 2000.
[31] R. A. Zoppi, B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium dioxide thin film on platinum substrates: preparation and characterization,” J. Electroanalytical Chem., vol. 544, pp. 47-57, 2003.
[32] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Film, vol. 391, pp. 133-137, 2001.
[33] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin film by a novel sol–gel processing for gas sensor applications,” Sens. Actuators B, vol. 68, pp. 189-196, 2000.
[34] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the composition of titanium oxide film produced by evaporation of Ti2O3,” Appl. Opt., vol. 37, pp. 5284-5290, 1998.
[35] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B. Samsetc, “Density and refractive index of TiO2 film prepared by reactive evaporation,” Thin Solid Film, vol. 371, pp. 218-224, 2000.
[36] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering,” Surf. Coat. Technol., vol. 151, pp. 51-54, 2002.
[37] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 film sputtered on unheated substrate,” Surf. Coat. Technol., vol. 153, pp. 93-99, 2002.
[38] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin-film prepared by R.F. magnetron sputtering method,” Surf. Coat.Technol., vol. 155, pp. 141-145, 2002.
[39] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin film by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[40] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin film: effect of growth temperature and plasma gas composition,” Thin Solid Film, vol. 371, pp. 126-131, 2000.
[41] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U.
Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of titanium oxide film obtained by PECVD,” Surf. Coat. Technol., vol. 126, pp. 123-130, 2000.
[42] S. S. Huang, and J. S. Chen, “Comparison of the characteristics of TiO2 film prepared by low-pressure and plasma enhanced chemical vapor-deposition,” J. Mater. Sci., vol. 13, pp. 77-81, 2002.
[43] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H. Naramoto, “Characterization of epitaxial TiO2 film prepared by pulsed laser deposition,” Thin Solid Film, vol. 401, pp. 88-93, 2001.
[44] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh, “Preparation of anatase and rutile thin-film by controlling oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292, 2002.
[45] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A. K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci., vol. 187, pp. 297-304, 2002.
[46] C. K. Ong, and S. J. Wang, “In-situ RHEED monitor of the growth of epitaxial anatase TiO2 thin-film,” Appl. Surf. Sci., vol. 185, pp.47-51,2001
[47] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T. Mitsuhashi, “Anatase-type TiO2 thin-film produced by lattice deformation,” Jpn. J. Appl. Phys., vol. 36, pp. 7358-7359, 1997.
[48] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of TiO2 thin-film on InP substrate prepared by liquid-phase deposition,” Jpn. J. Appl. Phys., vol. 41, pp. 4689-4690, 2002.
[49] M. K. Lee, and B. H. Lei, “Characterization of titanium-oxide film prepared by liquid-phase deposition using hexafluorotitanic acid,” Jpn. J. Appl. Phys., vol. 39, pp. L101-L103, 2000.
[50] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 film prepared by liquid-phase deposition,” Thin Solid Film, vol. 371, pp. 148-152, 2000.
[51] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by MOCVD,” Thin Solid Film, vol. 322, pp. 63-67, 1998.
[52] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin-film by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol.36, pp. 1346-1350, 1997.
[53] T. Suntola, Mater.” Atomic layer epitaxy” , Sci. Rep. 4, 261 (1989).
[54] J. W. Lim, H. S. Park, and S. W. Kang, J. Appl. Phys. 88, 6327 (2000).
[55] M. Leskela¨, M. Ritala,” Atomic layer deposition (ALD): from precursors to thin film structures”, Thin Solid Films 409, 138 (2002)
[56] M. Ritala, M. Leskela, J. P. Dekker, C. Mutsaers, P.J. Soininen, J. Skarp, Chem. Vap. Depos. 5 (1999) 7.
[57] M. Ritala, K. Kukli, A. Rahtu, et al. ,” Atomic layer deposition (ALD): from precursors to thin film structures ”, Science 288 (2000) 319.
[58] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics”, IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997.
[59] K. Matsuo, K. Nakajima, S. Omoto, S. Nakamura, A. Yagishia, G. Minamihaba, H. Yano, and K. Suguro, “Low leakage TiO2 gate insulator formed by ultra-thin TiN deposition and low temperature oxidation,” Jpn. J. Appl. Phys., vol. 39, pp. 5794-5799, 2000.
[60] M. Kadoshima, M. Hiratani, Y. Shimamoto, K.Torii, H. Miki, S. Kimura, and T. Nabatame,“Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Film, vol. 424, pp. 224-228, 2003.
[61] S.M. Sze, Physics of Semiconductor Devices. New York Wiley, 1981, pp. 379-390.
[62] Y. Tao, A. Yelon, E. Sacher, Z.H. Lu, M.J. Graham, “S-passivated InP(100)-(1×1) surface prepared by a wet chemical process,” Appl. Phys. Lett., vol. 60, pp. 2669- 2671, 1992.
[63] C. Engler, J. Dittmar, T. Chasse, “Stability of sulfur induced reconstructions on InP(001) surfaces,” Surface Sci. vol. 495, pp. 55-67, 2001.
[64] E. P. Gusev, E. Cartier, D. A. Buchanan, et al., “Ultrathin high-K metal oxides on silicon: processing, characterization and in-tegration issues,” Microelectronic Engineering, vol. 59, no. 1–4,pp. 341–349, 2001.
[65] D. Buchanan, IBM J. Res. Dev. 43, 245 (1999) .
[66] L. Feldman, E. P. Gusev, and E. Garfunkel, in Fundamental Aspects of
Ultrathin Dielectrics on Si-based Devices, edited by E. Garfunkel, E. P.
Gusev, and A. Y. Vul’ ~ Kluwer Academic, Dordrecht, (1998), p. 1.
[67 ] L. Manchanda, W. H. Lee, J. E. Bower, F. H. Baumann, W. L. Brown, C.
J. Case, R. C. Keller, Y. O. Kim, E. J. Laskowski, M. D. Morris, R. L.
Opila, P. J. Silverman, T. W. Sorsch, and G. R. Weber, Tech. Dig. Int.
Electron Devices Meet. 1998, 605 (1998).
[68] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W.
Gladfelter, and J. Yan, IEEE Trans. Electron Devices 44, 104 (1997).
[69] J. A. Aboaf, J. Electrochem. Soc. 114, 948 (1967).
[70] M. T. Duffy and A. G. Revesz, J. Electrochem. Soc. 117, 372 (1970).
[71] M. T. Duffy and W. Kern, RCA Rev. 31, 754 (1970).
[72] M. K. Lee, C. F. Yen, and S. H. Lin, “Electrical Improvements of MOCVD-TiO2 on (NH4)2Sx-Treated InP with Postmetallization Annealing,” J. Electrochem. Soc., vol. 154, no. 10, pp. G229-G233, Aug. 2007.
[73] Y. Q. Wu, Y. Xuan, T. Shen, P. D. Ye, Z. Cheng and A. Lochtefeld, “Enhancement-mode InP n-channel metal-oxide-semiconductor field-effect transistors with atomic-layer-deposited Al2O3 dielectrics,” Appl. Phys. Lett., vol. 91, no. 2, pp. 022108-022108-3, July. 2007.
[74] Y. Hwang, R. E. Herbert, N. G. Rudawski, and S. Stemmer, “Analysis of trap state densities at HfO2/In0.53Ga0.47As interfaces,” Appl. Phys. Lett., vol. 96, no. 10, pp. 102910-102910-3, Mar. 2010.
[75] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permitivity TiO2 dielectrics,” IEEE Tran. Electron Devices, vol. 44, no. 1, pp. 104-109, Jan. 1997.
[76] Steven M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev., vol. 110, pp. 111-131, Jan. 2010.
[77] M. Passlack, M. Hong, and J. P. Mannaerts, “Quasistatic and high frequency capacitance–voltage characterization of Ga2O3–GaAs structures fabricated by in situ molecular beam epitaxy,” Appl. Phys. Lett., vol. 68, no. 8, pp. 1099-1101, Dec. 1996.
[78] R. Iyer, R. R. Chang, A. Dubey, and D. L. Lile, “The effect of phosphorous and sulfur treatment on the surface properties of InP,” J. Vac. Sci. & Technol. B., vol. 6, no. 4, pp. 1174-1179, Jul. 1988.
[79] D. N. Gnoth, D. Wolfframm, A. Patchett, S. Hohenecker, D. R. T. Zahn, A. Leslie, I. T. McGovern, and D. A. Evans, “A comparison of S-passivation of III-V(001) surfaces using (NH4)2Sx and S2C12,” Appl. Surf. Sci., vol. 123-124, pp. 120-125, Jan. 1998.
[80] Z. L. Yuan, X. M. Ding, B. Lai, and X. Y. Hou, E. D. Lu, P. S. Xu, and X. Y. Zhang, “Neutralized (NH4)2S solution passivation of III–V phosphide surfaces,” Appl. Phys. Lett., vol. 73, no 20, pp. 2977-2979, Nov. 1998.
[81] H. Huang, X. Ren, X. Wang, Q. Wang, and Y. Huang, “Low-temperature InP/GaAs wafer bonding using sulfide-treated surface,” Appl. Phys. Lett., vol. 88, no. 6, pp. 061104-061104-3, Feb. 2006.
[82] Shinya Morikita, Tomoyuki Motegi and Hideaki Ikoma , “Improved Electrical Characteristics of Al2O3/InP Structure by Combination of Sulfur Passivation and Forming Gas Annealing,” Jpn. J. Appl. Phys. vol. 38, no. 12B, pp. L1512-L1514, Dec. 1999.
[83] Y. T. Chen, H. Zhao, Y. Wang, F. Xue, F. Zhou, and J. C. Lee,” Effects of fluorine incorporation into HfO2 gate dielectrics on InP and In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistors,” Appl. Phys. Lett.,96, 253502 (2010).
[84] S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee,R. Nakane, Y. Urabe, N. Miyata,T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka and S. Takagi, “Self-aligned Metal S/D InP MOSFETs using Metallic Ni-InP alloys,” 23rd International Conference on IPRM 2011.
[85] Moongyu Jang,Yarkyeon Kim, Jaeheon Shin, and Seongjae Lee, Kyoungwan
Park, “A 50 nm-gate length erbium-silicided n-type Schottky barrier metal oxide
semiconductor field-effect transistor”, Appl. Phys. Lett., Vol. 84, No. 5,
741-743.
[86] S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee,R. Nakane, Y. Urabe, N.
Miyata,T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka and S.
Takagi “Self-aligned Metal S/D InP MOSFETs using Metallic Ni-InP alloys”,
IPRM ,2011
[87] W.Saitoh, A. Itoh, S. Yamagami, and M. Asada, ”Analysis of short-channel
Schottky source/drain Metal-Oxide-Semiconductor field-effect transistor on
Silicon-on-Insulator substrate and demonstration of sub-50 nm n-type devices
with metal gate,” Jpn. J. Appl. Phys., Part1 38, 6226 (1991)
[88] Sheng-Pin Yeh, Chun-Hsing Shih, Jeng Gong and Chenhsin Lien” Latent noise
in Schottky barrier MOSFETs”, Journal of Statistical Mechanics: Theory and
Experiment.
[89] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technol.,
pp. 512, 2000.
[90] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J. Choi, and S. S. Baek, “Structural properties of BaTiO3 thin film on Si grown by metalorganic chemical vapor deposition,” J. Appl. Phys., vol. 73, pp. 1547-1549, 1993.
[91] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M.
Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by
MOCVD,” Thin Solid Film, vol. 322, pp. 63-67, 1998.
[92] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient
on the electrical-properties of TiO2 thin-film by metalorganic
chemical-vapor-deposition,” Jpn. J. Appl. Phys., vol. 36, pp. 1346-1350, 1997.
[93] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface
control in the chemical-vapor-deposition of titanium-dioxide on silicon(100),”
Thin Solid Film, vol. 377, pp. 766-771, 2000.
[94] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J.
Choi, and S. S. Baek, “Structural properties of BaTiO3 thin film on Si grown by
metalorganic chemical vapor deposition,” J. Appl. Phys., vol. 73, pp. 1547-1549,
1993.
[95] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M.
Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by
MOCVD,” Thin Solid Film, vol. 322, pp. 63-67,1998.
[96] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin film by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys., vol.36, pp. 1346-1350, 1997.
[97] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface control in the chemical-vapor-deposition of titanium-dioxide on silicon (100),” Thin Solid Film, vol. 377, pp.766-771, 2000.
[98] W. S. Lau, P. W. Qian, N. P. Sandler, K. A. Mckinley, and P. K. Chu, “Evidence that N2O is a stronger oxidizing-agent than O2 for the postdeposition annealing of Ta2O5 on Si capacitors,” Jpn. J. Appl. Phys., vol. 36, pp. 661-666, 1997.
[99] E. H. Rhoderick and R. H. Williams, Metal Semiconductor Contacts, 2nd Edn. Clarendon Press,Oxford, (1988).
[100] Y. P. SONG, R. L. VAN MEIRHAEGHE, W. H. LAFLER and F. CARDON, “On the Difference in Apparent Barrier Height as Obtained from Capacitance-Voltage and Current-Voltage-Temperature Measurements on Al/p-InP Schottky Barriers”, Solid-State Electronics. Vol. 29, No. 6, pp. 633638, 1986.
[101] M. S. Carpenter, M, R. Malloch, and T. E Dungan, “Effects of Na2S and (NH4)2S edge passivation treatments on the dark current‐voltage characteristics of GaAs pn diodes”, Semicond. Appl. Phys. Lett. 53, 66, 1988.
[102] Donald A. Neamen - Semiconductor Physics And Devices 3rd Ed [Mcgraw Hill 2003]
[103] K. Martens, W. Wang, K. De Keersmaecker, G. Borghs, G. Groeseneken, and H.
Maes, Microelectron. Eng. 84, 2146 (2007).
[104] H. D. Lee, T. Feng, L. Yu, D. Mastrogiovanni, A. Wan, E. Garfunkel, and T.
Gustafsson, Phys. Status Solidi C 7, 260 (2010).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.251.155
論文開放下載的時間是 校外不公開

Your IP address is 3.149.251.155
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code