Responsive image
博碩士論文 etd-0615114-231036 詳細資訊
Title page for etd-0615114-231036
論文名稱
Title
以淨水程序去除AOC值或吸附去除無機鹽之研究
Study on removing AOC value and inorganic salt using water treatment processes or adsorption method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-01-25
繳交日期
Date of Submission
2014-07-17
關鍵字
Keywords
吸附、淨水程序、生物可利用有機碳、粒狀活性碳、無機鹽
GAC, Inorganic salts, Adsorption, Water treatment processes, AOC
統計
Statistics
本論文已被瀏覽 5711 次,被下載 824
The thesis/dissertation has been browsed 5711 times, has been downloaded 824 times.
中文摘要
本研究針對南部某一座傳統淨水場進行AOC濃度變化探討及針對鹽類過高的問題,利用動力及平衡吸附實驗探討商用活性碳對水中無機鹽類之吸附特性及模式解析。
生物可利用有機碳(Assimilable Organic Carbon, 簡稱AOC)是表示水中生物可利用有機物量,控制水中之AOC濃度,能有效降低異營性微生物生長所造成的自來水水質劣化。
經由傳統淨水場進行AOC濃度變化實驗結果,顯示淨水場原水AOC含量以AOC-P17百分比例最高,在淨水程序對AOC去除率之影響,發現不同淨水程序對AOC確實有不同去除效果,其中以混凝程序最為有效,前加氯消毒程序會使得原水中大分子量被氧化成小分子量之有機物,故造成原水中AOC含量上升,淨水場最後清水中AOC殘餘濃度仍然過高(高於50 μg acetate-C/L) 。
在吸附去除鹽類之實驗結果顯示,動力吸附試驗約在8小時可達到平衡,吸附量隨著過氯酸鹽濃度增加及離子強度減少而增加,動力實驗結果以Modified Freundlich equation、Pseudo-1st-order equation、Pseudo-2nd-order equation三模式套用,結果以Modified Freundlich equation模擬最佳。等溫吸附試驗在恆溫5 – 45oC範圍內,粒狀活性碳吸附量為28.21 – 33.87 mg/g,試驗數據皆可適用Langmuir及Freundlich模式。粒狀活性碳熱力學參數ΔGo值為-1.49 ~ -1.43 kcal/mol、△Ho為-1.02 kcal/mol,△So為1.47 cal/mol,顯示吸附過程亦屬於自發性放熱反應。
在低離子強度、低pH值、低溫狀態下,有利於粒狀活性碳對過氯酸鹽之吸附。
Abstract
This study is focused on investigating the variations of AOC level in a conventional water treatment plant (WTP) and solving excess amounts of inorganic salts in drinking water. In addition, we will conduct to evaluate the effects on adsorption capacity of GAC and description on behavior using adsorption models.
AOC is indicating the level of organic carbon in drinking water. Controlling the level of AOC could reduce the amounts of organic nutrients for microorganisms for protecting re-growth of bacterial in finished water and distribution system.
The results of test showed the percent of AOC contained in raw water of WTP was majorly by part of AOC-P17. In measurement of AOC variation in water treatment process, it was found AOC was effectively removed. But the pre-chlorination disinfection process could increase the level of AOC, this was probable reason causing the level of AOC over 50 ppb in finished water in the WTP.
The results of adsorption of perchlorate in water using GAC and SWCNTs showed both adsorption equilibriums were achieved in approximately 8 hr. These adsorption datas were fitted with three models such as modified Freundlich, pseudo-first-order, and pseudo-second-order. The modified Freundlich model produced the best fit to describe the kinetic adsorption processes. The adsorption capacity increased as the concentration of perchlorate increased and as the ionic strength of the solution decreased. Maximum perchlorate adsorption capacities of 10.03–13.64  mg/g were attained within a temperature range of 5–45°C on the SWCNTs; and maximum perchlorate adsorption capacities of 28.21 – 33.87  mg/g were attained within a temperature range of 5–45°C on the GAC. The isothermal adsorption data were fitted with Langmuir and Freundlich models. Thermodynamic parameters were also calculated in results and discussions in this text, including equilibrium rate constant, standard free energy change, standard enthalpy change, and standard entropy change. Both two adsorption processes were found spontaneous exothermic reaction on the SWCNTs and GAC. In summary, the adsorption isotherm studies demonstrated that low solution pH values, low solution ionic strength, and low temperature conditions could facilitate the adsorption of perchlorate on the GAC.
目次 Table of Contents
論文審定書 i
謝  誌 ii
摘  要 iv
Abstract. vi
目  錄 viii
圖  次 xii
表  次 xiv
第一章 前  言 1
1.1研究緣起 1
1.2研究目的與內容 2
第二章 文獻回顧 3
2.1水體中有機物及無機鹽來源 3
2.2硫酸鹽、氯鹽及硝酸鹽對人體的影響及處理方法 3
2.3過氯酸鹽的來源及人體之健康影響 6
2.4過氯酸鹽的分析技術 8
2.4.1早期分析方法 8
2.4.2現代分析方法 10
2.5淨水程序之水處理廠概況 10
2.5.1分水井原理 11
2.5.2膠凝沉澱池原理 11
2.5.3快濾池原理 12
2.6生物可利用有機碳檢驗介紹 12
2.6.1生物可利用有機碳分析方法比較 15
2.7奈米碳管及粒狀活性碳簡介 18
2.8奈米碳管之應用 23
2.9吸附原理 24
2.9.1影響吸附能力因素 26
2.9.2動力吸附模式 27
2.9.3等溫吸附模式 29
2.10熱力學模式 32
第三章 實驗材料與方法 34
3.1實驗流程 34
3.2實驗材料與設備 36
3.2.1實驗材料 36
3.2.2實驗設備 37
3.3實驗藥品 38
3.4分析方法 38
3.4.1有機物分析方法 39
3.4.2硫酸鹽、氯鹽及硝酸鹽之分析方法 43
3.4.3過氯酸鹽之分析方法及檢量線配製 43
3.5奈米碳管之特性分析 45
3.5.1掃描式電子顯微鏡 45
3.5.2比表面積分析儀 45
3.5.3霍氏轉換紅外線光譜 46
3.5.4熱重量分析儀 46
3.6吸附實驗步驟 47
3.6.1實驗裝置 47
3.6.2三種無機鹽之先期吸附實驗步驟:不同PH值 47
3.6.3過氯酸鹽動力吸附實驗 48
3.6.4平衡吸附實驗:不同PH值 48
3.6.5平衡吸附實驗:不同溫度 49
3.7吸附模式模擬步驟 50
3.8熱力學參數計算步驟 50
3.9微量有機物處理實驗步驟 50
第四章 結果與討論 53
4.1原水中AOC值之變化 53
4.2以不同淨水程序處理水中AOC值之效率 54
4.2.1前加氯 54
4.2.2膠凝沉澱 55
4.2.3快濾池及後加氯 55
4.3原水及水處理廠處理後清水之水質比較 56
4.4奈米碳管及粒狀活性碳之物化特性 59
4.5硫酸鹽、氯鹽、硝酸鹽吸附效率 64
4.6過氯酸鹽動力吸附 66
4.6.1吸附平衡動力實驗 66
4.6.2不同離子強度之影響 68
4.6.3不同腐植酸濃度之影響 72
4.7過氯酸鹽等溫吸附 76
4.7.1不同PH值之影響 76
4.7.2不同溫度之影響 77
4.8吸附熱力學之計算 80
4.9國內外文獻之吸附劑及效率之比較 82
第五章 結論與建議 83
5.1結論 83
5.2建議 84
參考文獻 85
參考文獻 References
1. Anna, S.Krystyna, P, (2007), Adsorption of heavy metal ions with carbon nanotubes. Separation and Purification Technology 58(1), 49-52.
2. Bansal, R. C., and Goyal, M., (2010), Activated carbon adsorption. CRC press.
3. Bhatnagar, A., Sillanpää, M., (2011), A review of emerging adsorbents for nitrate removal from water, Chem. Eng. J., 168, 493–504.
4. Clewell, R. A., Chaudhuri, S., Dickson, S., Cassady, R. S., Wallner, W. M., Eldridge, J. E., & Tsui, D. T. (2000). Analysis of trace level perchlorate in drinking water and ground water by electrospray mass spectrometry (pp. 45-58). Springer US.
5. Cox, A. R., Mogford, R., Vincent, B. and Harley, S., (2001), The effect of polymer chain architecture on the adsorption properties of derivatised polyisobutylenes at the carbon:n-heptane interface, Colloids and Surfaces A:Physicochemical and Engineering, 181(1), 205-213.
6. Dean, K. E., et al., (2004), Development of fresh water-quality criteria for perchlorate, Environ. Toxicol. Chem. 23, 1441-1451.
7. Eva Kumara et al., (2010), Perchlorate removal from aqueous solutions by granular ferric hydroxide (GFH), Chemical Engineering Journal 159, 84–90.
8. Fanning, J.C., (1999), The chemical reduction of nitrate in aqueous solution, Coordination chemistry reviews 199, 159-179.
9. Freundlich, H., (1906), Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie 57, 385-470.
10. Greer, M. A., et al., (2002), Health effect assessment for environmental perchlorate contamination: The dose response for inhibition of thyroidal radioiodide uptake in humans, Environ. Health Perspect, 110, 927-937.
11. Hautman, D. P., et al., (1999). Method 314.0, Determination of perchlorate in drinking water using ion chromatography, Revision 1.0, 35p. USEPA, National Exposure Research Laboratory, Office of Research and Development, Cincinnati, OH.
12. Hayes, K.F.Leckie, J.O., (1987), Modelling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. Journal of Colloid and Interface Science 115(2), 564-572.
13. Hjeresen, D., et al., (2004), Los Alamos National Laboratory Perchlorate Issues Update.
14. Ho, Y.S.McKay, G., (1999), Pseudo-second order model for sorption processes. Process Biochemistry 34(5), 451-465.
15. Iijima, S., (1991), Helical microtubules of graphitic carbon, Nature 354, 56-58.
16. ITRC, In Situ Bioremediation in GW-Perchlorate (2002).
17. Journet, C.Bernier, P., (1998), Production of carbon nanotubes. Applied Physics A: Materials Science and Processing 67(1), 1-9.
18. Karge, H.G.Weitkamp, J., (2008), Adsorption and Diffusion 7.
19. Kim, Y.N., Lee, Y.C., and Choi, M., (2013), Complete degradation of perchlorate using Pd/N-doped activated carbon with adsorption/catalysis bifunctional roles. Carbon, 65, 315-323.
20. Krasner S. W., J. P. Croue, J. Buffle, and E. M. Perdue, (1996), Three approaches for characterizing NOM. AWWA., 88(6), pp. 66-79.
21. Langmuir, I., (1916), The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society 38(11), 2221-2295.
22. Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A.Wang, G., (1996), Large-scale synthesis of aligned carbon nanotubes. Science 274(5293), 1701-1703.
23. Lim, J., and Okada, M., (2005)“Regeneration of granular activated carbon using ultrasound," Ultrasonics Sonochemistry 12, 277-282 .
24. Lu, C. S., and Chiu, H. T., (2006), “Adsorption of zinc (II) from water with purified carbon nanotubes,” Chemical Engineering Science 61, 1138- 1145
25. Lu, C.S.Su, F.S, (2007), Adsorption of natural organic matter by carbon nanotubes. Separation and Purification Technology 58(1), 113-121.
26. Mahmudov, R., Huang, C.P., (2010), Perchlorate removal by activated carbon adsorption, Sep. Purif. Technol. 70, 329–337.
27. Namasivayam, C, Sangeetha, D, (2008), Application of coconut coir pith for the removal of sulfate and other anions from water, Desalination 219, 1–13.
28. Nandi, B.K., Goswami, A.Purkait, M.K., (2009), Adsorption characteristics of brilliant green dye on kaolin. Journal of Hazardous Materials 161(1), 387-395.
29. Odom. T.W, Huang. J.L, Kim. P, Lieber. C.M., (1998), Atomic structure andelectronic properties of single walled carbon nanotubes, Nature 391, 62-64.
30. Oke Isaiah Adesola, (2009), Orthogonal experiments in the development of carbon-resin for chloride removal from solutions, Statistical Methodology 6, 109-119.
31. Orris, G. J., (2004), Perchlorate in Natural Minerals and Materials, USGS Quarterly Report, April.
32. Perchlorate in drinking water; regulatory update and treatment options, (2011), Water Research Foundation.
33. Rebhun, M, (2004), Desalination of reclaimed wastewater to prevent salinization of soils and groundwater, Desalination 160, 143-149.
34. Salem Baidasa, Baoyu Gaob, Xiaoguang Menga, (2011), Perchlorate removal by quaternary amine modified reed, Journal of Hazardous Materials 189, 54–61.
35. Siantar, D. P., Schreier, C. G., Chou, C. S. and Reinhard, M., (1996), Treatment of 1,2-Dibromo-3-chloropropane and nitrate- contaminated water with zero-valent iron or hydrogen/palladium catalysts, Water Research 30, 2315-2322.
36. Srivastava, V., Weng, C. H., Singh, V. K., and Sharma, Y. C., (2011), Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies. Journal of Chemical & Engineering Data, 56(4), 1414-1422.
37. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E.Smalley, R.E., (1996), Crystalline Ropes of Metallic Carbon Nanotubes. Science 273(5274), 483-487.
38. Urbansky, et al., (2000), San Diego State University, San Diego, California.
39. USEPA, (2004), Public Health Goal for Chemicals in Drinking Water, Perchlorate, Office of Environmental Health Hazard Assessment, Environmental Protection Agency.
40. Van Der Kooij, D., (1995), Significance and Assessment of The Biological Stability of Drinking Water, The Handbook of Environmental Chemistry. J. Hrubec, Vol.5, ed., Springer-Verlag, Berlin, Germany. pp.89-102.
41. Van der Kooij, D., van Lieverloo, J.H.M., Schellart, J.A. and Hiemstra, P. (1999), Distributing Drinking Water without Disinfectant Highest Achievement or Height of Folly?, Jour. Water SRT-Aqua., Vol.48, No.1, pp.31-37.
42. Wanqing, L., (2001), The characterization of hydrogen ion concentration in sequential cumulative rainwater, Atmospheric Environment 35, 6219-6225.
43. Weng, C. H., Lin, Y. T., Chang, C. K., and Liu, N., (2013), Decolourization of direct blue 15 by Fenton/ultrasonic process using a zero-valent iron aggregate catalyst. Ultrasonics sonochemistry, 20(3), 970-977.
44. Weng, C. H., Wu, Y. C., (2011), Potential low-cost biosorbent for copper removal: pineapple leaf powder. Journal of Environmental Engineering, 138(3), 286-292.
45. Weng, C.H., Sharma, Y.C.Chu, S.H., (2008), Adsorption of Cr(VI) from aqueous solutions by spent activated clay. Journal of Hazardous Materials 155(1-2), 65-75.
46. Wu et al., (2010) Removal of perchlorate contaminants by calcined Zn/Al layered double hydroxides: Equilibrium, kinetics, and column studies, Desalination 256, 136–140.
47. Xia, C., Jing, Y., Jia, Y., Yue, D., Ma, J., and Yin, X., (2011), Adsorption properties of congo red from aqueous solution on modified hectorite: Kinetic and thermodynamic studies. Desalination, 265(1), 81-87.
48. Xu, J.H., Gao, N.Y., Deng, Y., Sui, M.H., and Tang, Y.L., (2011), Perchlorate removal by granular activated carbon coated with cetyltrimethyl ammonium bromide. Journal of colloid and interface science, 357(2), 474-479.
49. Y. Xie, S. Li, F. Wang, G. Liu, (2010), Removal of perchlorate from aqueous solution using protonated cross-linked chitosan, Chem. Eng. J. 156, 56–63.
50. Zhan, Y., Lin, J., Zhu, Z., (2011), Removal of nitrate from aqueous solution using cetylpyridinium bromide (CPB) modified zeolite as adsorbent. Journal of hazardous materials, 186(2), 1972-1978.
51. 成會明,(2004),奈米碳管,五南出版社,台北。
52. 行政院環境保護署環境監測及資訊處,(2008),環境水質監測資料電子交換作業規範(草案)。
53. 李宗緯,(2010),利用廉價吸附材去除廢水中溴化阻燃劑之研究,義守大學,土木與生態工程學系碩士論文。
54. 張正綸,(2011),Fenton法結合超音波技術降解直接性偶氮染料之研究,義守大學,土木與生態工程學系碩士論文。
55. 張育姍,(2004),翡翠水庫集水區非點源污染整治區域優先順序評估,國立台北科技大學,環境規劃與管理研究所,碩士論文。
56. 莊蕙萍,(2003),三段式流體化床生物程序處理PAN廢水之程序功能評估與微生物族群動態變化之探討,國立成功大學,環境工程學系碩士論文。
57. 陳一銘,(2007),零價鐵去除水中硝酸鹽之研究,淡江大學,水資源及環境工程研究所博士論文。
58. 陳渤丰,(2010),淨水程序與配水管網中生物可分解有機質變化與預測之研究,國立中山大學,環境工程研究所碩士論文。
59. 陳靜生,(1992),「水環境化學」,曉園出版社,台北。
60. 曾文裕,(2006),催化性雙金屬還原水中硝酸鹽之研究,台灣大學,環境工程研究所碩士論文。
61. 黃文昇,(2012),超音波提升芬頓及過硫酸鹽程序去除水中染料之研究,義守大學,土木與生態工程學系碩士論文。
62. 黃韋翔,(2009),奈米碳管特性對於原水中黃酸吸附特性之研究,國立中山大學,環境工程研究所碩士論文。
63. 劉展良,(2005),利用微波電漿化學氣相沉積法成長多壁奈米碳管及其電性之研究,國立中央大學,機械工程研究所碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code