Responsive image
博碩士論文 etd-0615115-131817 詳細資訊
Title page for etd-0615115-131817
論文名稱
Title
高折射率纖衣少數模態與單模態摻鉻釔鋁石榴石晶體光纖成長之研究
The Study of Growth Few-Mode and Single-Mode Cr4+:YAG Crystal Fibers with High-Index Cladding
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-14
繳交日期
Date of Submission
2015-07-16
關鍵字
Keywords
單模態、少數模態、雷射基座加熱生長法、高折射率玻璃、摻鉻釔鋁石榴石、增益
Few-Mode, Laser-heated pedestal growth method (LHPG), Gain, Single-Mode, High-index glass, Cr4+:YAG
統計
Statistics
本論文已被瀏覽 5642 次,被下載 32
The thesis/dissertation has been browsed 5642 times, has been downloaded 32 times.
中文摘要
本論文為高折射率纖衣少數模態與單模態摻鉻釔鋁石榴石晶體光纖Cr4+:YAG成長之研究,並探討超寬頻Cr4+:YAG螢光特性。利用抽絲塔(Drawing-tower)技術將高折射率中空石英管棒(Schott N-SF57)抽製成內徑/外徑為40/320μm及70/260μm的中空毛細管作為纖衣,並利用雷射加熱基座生長法(Laser heated pedestal growth, LHPG)及即時監測系統將晶棒生長縮徑成直徑34μm及25μm的晶體為纖芯,接著再利用LHPG法將纖芯與纖衣加熱使緊密包覆形成少數模態及單模態摻鉻晶體光纖。模場量測在波長1.4μm的傳輸特性,同時量測螢光及增益特性。當長度為98mm、纖芯直徑為34μm的少數模態摻鉻晶體光纖在雙端激發架構下,激發之功率400mW時可獲得約4.1dB之增益(Gross gain),但未獲得凈增益(Net gain);而長度為67mm、纖芯直徑為25μm的單模態特性在單端激發架構下,當激發光之功率達320mW時,可獲得約2.7dB之增益,整體架構之插入損耗約2dB,淨增益為0.7dB。未來在提升晶體光纖效能工作上可以朝向精確改良提高晶棒(Source rod)與晶種(Seed rod)對準及輔以綠光即時監測以提升光纖長度及均勻度品質,提高增益以利寬頻放大器研究。
Abstract
In this study, we have successfully fabricated the few-mode and the single-mode Cr4+:YAG crystal fibers with high-index cladding. The single crystal with diameter of 34μm and 25μm grown by laser-heated pedestal growth method (LHPG) are inserted into the capillary of N-SF57 high-index glass with the inner and outer diameters of 40/320 μm and 70/260 μm fabricated by fiber drawing tower. A LHPG method by CO2 laser heating was focused and shone around the capillary in order to heat it up to collapse the tightly-fitted glass capillary. In the far-field pattern measurement, the fibers with the diameter of 34μm (FMCDCCFs) are guided in few-mode, namely LP01 and LP11, and the fibers with the diameter of 25μm (SMCDCCFs) are guided in single mode, namely LP01 or HE11 mode in fiber at wavelength of 1.4μm. In the gain measurement, the Yb-doped fiber laser at wavelength of 1064nm was employed as the pump beam and a tunable laser 1400nm was the signal beam. The FMCDCCF exhibited a gross gain of 4.1 dB at the pump power about 400 mW by double pumping. The SMCDCCF exhibited a gross gain of 2.7 dB and the net gain of 0.7 dB at the pump power about 320 mW by single pumping. Further studies on higher gain, not only to reduce the transmission loss, but also to improve the device efficiency, are essential to develop the broadband fiber amplifiers.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 4
1.3 章節介紹 7
第二章 Cr4+:YAG晶體光纖特性 8
2.1 Cr4+:YAG晶體結構與特性 8
2.2 Cr4+:YAG晶體能階模型及吸收與放射頻譜 17
2.3 高折射率纖衣Cr4+:YAG晶體光纖信號傳輸 20
第三章 高折射率纖衣Cr4+:YAG晶體光纖製程 25
3.1 Cr4+:YAG晶體光纖生長 25
3.2 高折射率纖衣Cr4+:YAG晶體光纖研製 36
3.3 高折射率纖衣Cr4+:YAG晶體光纖端面之研磨拋光 40
第四章 高折射率纖衣Cr4+:YAG晶體光纖特性量測 45
4.1 遠場量測 45
4.2 插入損耗量測 46
4.3 螢光量測 49
4.4 增益特性量測 51
第五章 結論與討論 57
5.1 結論 57
5.2 討論 58
第六章 參考文獻 62
參考文獻 References
1. Gerd Keiser, “Optical fiber communications,” fourth edition, Boston, MA: McGraw-Hill, 2000
2. M. J. Connolly, Semiconductor Optical Amplifiers. Boston, MA: Springer-Verlag, 2002.
3. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Quant. Electron., Vol. 8, pp 548-559, 2002.
4. Mori, H. Masuda, K. Shikano, K. Oilkawa, K. Kato and M. Shimizu,“Ultra-wideband tellurite-based Raman fibre amplifier,” Electronics Letters., Vol. 37, No. 24, pp 1442-1443, Nov. 2001.
5. T. Kasamatsu, Y. Yano, and H. Sekita, “1.50μm-band gain-shifted thulium-doped fiber amplifier with 1.05 and 1.56μm dual-wavelength mping,” Opt. Lett., Vol. 24, pp 1684, 1999.
6. Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H. Sigel, “Pr3+ -doped fluoride fiber amplifier operating at 1.31μm,”Opt. Lett., Vol. 16, pp 1747, 1991.
7. E. Desurvire, “Erbium-doped Fiber Amplifiers: Principles and Applications,” Ch. 4, New York: Wiley, 1994.
8. J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier,” Electronics Letters, Vol. 26, pp 1645-1646, 1990.
9. J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. R. F. Oliveira, and M.A. Romero, “All Silica S-Band Double-Pass Erbium-Doped Fiber Amplifier,” IEEE Photonics Technology Letters, Vol. 17, No. 7, pp 1399-1401, Jul. 2005.
10. T. Sakamoto, S. Aozasa, M. Yamada and M. Shimizu, “High-gain hybrid amplifier consisting of cascaded fluoride-based TDFA and silica-based EDFA in 1458-1540nm wavelength region,” Electronics Letters, Vol. 39, No. 7, pp 597-599, Apr., 2003.
11. C. G. Atkins , J. F. Armitage , R. Wyatt , B. J. Ainslie and S. P. Criag-Ryan "High-gain broad spectral bandwidth erbium-doped fibre pumped near 1.5m,” Electron. Lett., Vol. 25, pp 910-911 1989
12. Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, H.M. Yang, M.T. Sheen, S.L. Huang, T.Y. Chang, and W.H. Cheng, “Fabrication of Cr-doped Fibers by Drawing Tower,” OFC, Anaheim, CA, pp. OWI21, 2006.
13. Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, S.L. Huang, and W.H. Cheng, “Broadband emission from Cr-doped fibers fabricated by drawing tower,” Opt. Exp., Vol. 14, pp 8492-8497, 2006.
14. Y.C. Huang, J.S. Wang, Y.K. Lu, W.K. Liu, K.Y Huang, S.L. Huang, and W.H. Cheng, “Preform fabrication and fiber drawing of 300nm broadband Cr-doped fibers,” Opt. Exp., Vol. 15, pp 14382-14388, 2007.
15. W.L. Wang, G.L. Cheng, Y.C. Huang, N.K. Chen, S.L. Huang, and W.H. Cheng, “Few-Mode Cr-Doped Fibers by Cladded High Index Glass for Broadband Fiber Amplifiers,”. IEEE Photo. Technol. Letts. Vol. 26, pp 587-590, 2014.
16. 黃光瑤,“摻鉻釔鋁石榴石晶體光纖之超頻寬自發輻射放大光源之研究”,碩士論文,國立中山大學,2003年。
17. S.M. Yeh, S.L. Huang, Y.J. Chiu, H. Taga, P.L. Huang, Y.C. Huang, Y.K. Lu, J. P. Wu, W.L. Wang, D.M. Kong, J.S. Wang, P. Yeh, and W.H. Cheng, “Broadband chromium-doped fiber amplifiers for next-generation optical communication systems,” J. Lightw. Technol. Vol. 30, pp 921-927, 2012.
18. Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo S. L. Huang, and W.H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photon. Technol. Letts. Vol. 22, pp 914-916, 2010.
19. 王維倫,“少數模態與單模態摻鉻釔鋁石榴石晶體光纖之生長及光放大特性研究”,博士論文,國立中山大學,2015年。
20. 劉力瑋,”少數模態摻鉻釔鋁石榴石晶體雙纖衣光纖之研製”,碩士論文,國立中山大學,2013年。
21. Digonnet, M., et al. "Clad Nd: YAG fibers for laser applications." Journal of Lightwave Technology, Vol. LT-5, pp 642-646, 1987.
22. 余樹楨,”晶體之結構與性質”,渤海堂文化事業有限公司,十二版,2009年。
23. Gemological Institute of America(GIA), “Gem Reference Guide”, 1995.
24. 馮端,” 固體物理學大辭典”,建宏出版社,1998年。
25. M. A. Gulgun, W. Y. Ching, Y. N. Xu, and M. Ruhle, “Electron states of YAG probed by energy-loss near-edge spectrometry and ab initio calculations,” Phil. Mag. B, Vol. 79, pp 921-940, 1999.
26. S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, “Spectroscopic and laser studies of Cr4+:YAG and Cr4+:Y2SiO5,” OSA Proceedings on Advanced Solid-State Lasers, Vol. 15, pp 334-338, 1993.
27. X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses,” Optical Materials, Vol. 20, pp 63-72, 2002.
28. Cz. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy of chromium ions in various valence states in glass,” J. of Alloys and Compounds, Vol. 341, pp 19-27, 2002.
29. U. Hommerich, X. Wu, and V. R. Davis, “Demonstration of room-temperature laser action at 2.5 m from Cr2+:Cd0.85Mn0.15Te,” Optics Letters, Vol. 22, pp 1180-1182, 1997.
30. S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev “CW and pulsed Cr2+:ZnS and ZnSe microchip laser ,” Technical Digest, Lasers and Electro-Optics, pp 120-121, 2002.
31. J. McKay, K. L. Schepler and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Optics Letters, Vol. 24, No. 22, pp 1575-1577, 1999.
32. S. Kuck, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,“ OSA Proceedings on Advanced Solid-State Lasers, Vol. 10, pp 92-94, 1991.
33. Alexander A. Kaminskii, “Laser crystal,” 1st ed, Springer-Verlag Berlin Heidelberg New York, Vol. 241, pp 381-382, 1981.
34. S. Aoshima, H. Itoh, K. Kuroyanagi, Y. Takiguchi, Y. Ohbayashi, I. Hirano, and Y. Tsuchiya, “Tunable picosecond all solid-state Cr:LiSAF Laser”, IEEE, IMCT’94, pp 937-940, 1994.
35. Yen-Kuang Kuo, Man-Fang Huang, and Milton Bimbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,”J. of Quantum Electron, Vol. 31, No. 4, pp 657-663, 1995.
36. Takashi Fujii, Masahiro Nagano, and Koshichi Nemoto, “Spectroscope and laser oscillation characteristics of high Cr4+-doped forsterite,” J. of Quantum Electron, Vol. 32, No. 8, pp 1497-1503, 1996.
37. J.C. Chen, C.Y. Lo, K.Y. Huang, F.J. Kao. S.Y. Tu, and S.L. Huang, “Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers,” J. Crystal Growth, Vol. 274, pp 522-529, 2005.
38. S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, “Spectroscopic and laser studies of Cr4+:YAG and Cr4+:Y2SiO5,” OSA Proceedings on Advanced Solid-State Lasers, pp 334-338, 1993.
39. 黃翊中,” 抽絲塔研製超寬頻摻鉻光纖之製程與特性”,博士論文,國立中山大學,2007年。
40. S. A. Markgraf, M. F. Pangborn, and R. Dieckmann, “Influence of different divalent co-dopants on the Cr4+ of Cr-doped Y3Al5O12 content,” Journal of Crystal Growth, Vol. 180, 1997.
41. B. M. Tissue, W. Jia, L. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium aluminum garnet single-crystal fibers using a divalent codopant,” J. Appl. Phys., Vol. 70, pp 3775-3777, 1991.
42. C.Y. Lo, K.Y. Huang, J.C. Chen, C.Y. Chuang, C.C. Lai, S.L. Huang, Y.S. Lin, and P.S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics Letters, Vol. 30, pp 129-131, 2005.
43. C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett., Vol. 82, pp 4035-4037, 2003.
44. H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE Journal of Quantum Electronics Vol. 29, pp. 2508, 1993.
45. Yaman, Fatih, et al., “Long distance transmission in few-mode fibers.”, Opt. Express Vol. 18, pp. 13250-13257, 2010.
46. P.Rigby, “The fifth dimension”, Lightwave, November 25, 2014
47. M. J. F. Digonnet and C. J. Gaeta, ”Theoretical analysis of optical fiber laser amplifiers and oscillators”, APPLIED OPTICS, Vol. 24, No. 3, 1985.
48. R. S. Feigelson, W. L. Kway, and R. K. Route, “Single crystal fibers by the laser-heated pedestal growth method,” Opt. Eng., Vol. 24, pp. 1102-1107, 1985.
49. R.S. Feigelson, “Pulling Optical Fibers,” J. Crystal growth, Vol. 79, pp.669-680, 1986.
50. 黃光瑤,“摻鉻釔鋁石榴石晶體光纖之生長系統改良”,博士論文,國立中山大學,2009年。
51. W.L. Wang, G.L. Cheng, Y.C. Huang, N.K. Chen, S.L. Huang, and W.H. Cheng, “Few-Mode Cr-Doped Fibers by Cladded High Index Glass for Broadband Fiber Amplifiers,”. IEEE Photo. Technol. Letts., Vol. 26,587-590, 2014.
52. W. L. Wang, G. L. Cheng, Y. C. Huang, N. K. Chen, S. L. Huang, and W. H. Cheng, “Single-mode Cr-doped crystalline core fibers for broadband fiber amplifiers”, IEEE Photon. Technol. Lett., Vol. 27, pp.205-208, 2015
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code