Responsive image
博碩士論文 etd-0615115-152743 詳細資訊
Title page for etd-0615115-152743
論文名稱
Title
針對具有非線性輸入及死區之擾動系統設計適應區塊步階回歸控制器
Design of Adaptive Block Backstepping Controllers for Perturbed Systems with Input Nonlinearity and Dead Zone
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-25
繳交日期
Date of Submission
2015-07-30
關鍵字
Keywords
區塊步階回歸控制、非線性輸入、半嚴格回授型式、適應控制、死區、李亞諾夫穩定理論
dead-zone, input nonlinearities, semi-strict feedback form, Lyapunov stability theorem, block backstepping control, adaptive control
統計
Statistics
本論文已被瀏覽 5676 次,被下載 0
The thesis/dissertation has been browsed 5676 times, has been downloaded 0 times.
中文摘要
基於李亞諾夫之穩定定理(Lyapunov Theorem),本論文針對含有非線性及死區之多輸入系統,提出利用適應性步階回歸技術來設計控制器以解決regulation問題。在設計的過程中,根據受控體的區塊個數(m個),在前m-1個區塊中,每個區塊分別設計虛擬輸入控制器,然後,在第m個區塊設計強健控制器。在虛擬輸入和強健控制器中,加入適應增益來估測一些未知干擾的上界常數,這樣一來,系統擾動的上界即可不必事先知道。在穩定度分析中可得知,假設所有的控制器輸入皆在死區外,系統可達到漸近穩定之效果,若任一控制輸入在死區內,則系統能達到 uniformly ultimately bounded (UUB)之性能。最後,本論文提供一個數值範例及一個實際應用的例子以驗證本控制器的可行性。
Abstract
Based on the Lyapunov stability theorem, a design methodology of adaptive block backstepping controller is proposed in this thesis for a class of multi-input systems with input nonlinearity and dead zone to solve regulation problems. According to the number of block (m) in the plant to be controlled, m-1 virtual inputs are designed from the first block to the (m-1)th block. The proposed robust controller is designed from the last block. Adaptive mechanisms are also employed in each of the virtual inputs and the robust controller, hence the knowledge of the least upper bounds of perturbations is not required. Stability analysis shows that the controlled system is able to achieve asymptotic stability if all the control inputs is outside of the dead zone, and uniformly ultimately bounded is achieved if any one of the designed control inputs is in the dead zone. A numerical and a practical example are given for demonstrating the feasibility of the proposed control scheme.
目次 Table of Contents
論文審定書 ……………………………………………………………………… i
致謝 ……………………………………………………………………………… ii
中文摘要 ………………………………………………………………………… iii
Abstract ………………………………………………………………………… iv
List of Figures ………………………………………………………………….. vii
Chapter 1 Introduction 1
1.1 Motivation …………………………………………………………………… 1
1.2 Brief Sketch of the Contents ……………………………………………… 3
Chapter 2 Design of Adaptive Backstepping Controllers 4
2.1 System Descriptions and Problem Formulations ………………………...4
2.2 Design of Adaptive Backstepping Controllers …………………………… 7
Chapter 3 Numerical Example and Application 32
3.1 Numerical Example ………………………………………………………... 32
3.2 Practical Application ……………………………………………………… 36
Chapter 4 Conclusions 60
Bibliography 61
Appendix A 68
Appendix B 70
參考文獻 References
[1] M. L. Corradini and G. Orlando, “Robust stabilization of nonlinear uncertain plants
with backlash or dead zone in the actuator,” IEEE Transactions on Control Systems
Technology, vol. 10, no. 1, pp. 158-166, 2002.
[2] G. Tao and P. V. Kokotovic, “Adaptive control of plants with unknown dead-zone,”
IEEE Transactions on Automatic Control, vol. 39, no. 1, pp. 59-68, 1994.
[3] X. S.Wang, C. Y. Su, and H. Hong, “Robust adaptive control of a class of nonlinear
systems with unknown dead-zone,” Automatica, vol. 40, pp. 407-413, 2004.
[4] A. Taware, G. Tao, and C. Teolis, “Design and analysis of a hybrid control scheme
for sandwich nonsmooth nonlinear systems,” IEEE Transactions on Automatic Con-
trol, vol. 47, pp. 145-150, 2002.
[5] J. A. Primbs and P. V. Kokotovic, “Kuhn-Tucker-Based stability conditions for systems
with saturation,” IEEE Transactions on Automatic Control, vol. 46, pp. 1643-
1647, 2001.
[6] Y.Wu and Y. S. Zhong, “Robust backstepping output tracking control for SISO uncertain
nonlinear systems with unknown virtual control coefficients,” International
Journal of Control, vol. 83, no. 6 pp. 1182-1192, 2010.
[7] Z. P. Jiangdagger and H. Nijmeijer, “Tracking control of mobile robots: a case study
in backstepping,” Automatica, vol. 33, no, 7, pp. 1393-1399, 1997.
[8] Y. Zhang, C.Wen, and Y. C. Soh, “Discrete-time robust backstepping adaptive control
for nonlinear time-varying systems,” IEEE Transactions on Automatic Control,
vol. 45, no. 9, pp. 1749-1755, 2000.
[9] Y. Zhang, S. Li, and Q. Zhu, “Backstepping-enhanced decentralised PID control for
MIMO processes with an experimental study,” IET Control Theory and Applica-
tions, vol. 1, pp. 704-712, 2007.
[10] S. C. Tong, Y. M. Li, G. Feng, and T. S. Li, “Observer-based adaptive fuzzy backstepping
dynamic surface control for a class of MIMO nonlinear systems,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 41, no. 4,
pp. 1124-1135, 2011.
[11] D. Chwa, “Sliding-mode tracking control of nonholonomic wheeled mobile robots
in polar coordinates,” IEEE Transactions on Control Systems Technology, vol. 12,
no. 4, pp. 637-644, 2004.
[12] Y. Tang, “Terminal sliding mode control for rigid robots,” Automatica, vol. 34.
no. 1, pp. 51-56, 1998.
[13] Y. H. Roh, and J. H. Ohb, “Robust stabilization of uncertain input-delay systems by
slidingmode control with delay compensation,” Automatica, vol. 35, pp. 1861-1865,
1999.
[14] R. A. DeCarlo, S.H. Zak, and G. P.Mattews, “Variable structure control of nonlinear
multivariable systems: a tutorial,” Proceedings of the IEEE, vol. 76, no. 3, pp. 212
- 232, 1988.
[15] W. J. Wang, G. H. Wu, and D. C. Yang, “Variable structure control design for
uncertain discrete-time systems,” IEEE Transactions on Automatic Control, vol. 39,
no. 1, pp. 99-102, 1994.
[16] Y. Niu, D.W. C. Ho, and Z.Wang, “Improved sliding mode control for discrete-time
systems via reaching law,” IET Control Theory and Applications, vol. 3, no. 11, pp.
2245-2251, 2010.
[17] Q. Hu, G. Ma, and L. Xie, “Robust and adaptive variable structure output feedback
control of uncertain systems with input nonlinearity,” Automatica, vol. 44, pp. 552-
559, 2008.
[18] K. K. Shyu, W. J. Liu, and K. C. Hsu, “Design of large-scale time-delayed systems
with dead-zone input via variable structure control,” Automatica, vol. 41, pp. 1239-
1246, 2005.
[19] K. C. Hsu, “Decentralized variable-structure control design for uncertain large-scale
systems with series nonlinearities” International Journal of Control, vol. 68, no. 6,
pp. 1231-1240, 1997.
[20] K. C. Hsu, “Variable structure control design for uncertain dynamic systems with
sector nonlinearities” Automatica, vol. 34, pp. 505-508, 1998.
[21] C. C. Hua and S. X. Ding, “Model following controller design for large-scale systems
with time-delay interconnections and multiple dead-zone inputs,” IEEE Trans-
actions on Automatic Control, vol. 56, no. 4, pp. 962-968, 2003.
[22] J. Zhou, C.Wen, andW.Wang, “Adaptive backstepping control of uncertain systems
with unknown input time-delay,” Automatica, vol. 45, pp. 1415-1422, 2009.
[23] H. Ye, W. Gui, and Z. P. Jiang, “Backstepping design for cascade systems with
relaxed assumption on lyapunov functions,” IET Control Theory and Applications,
vol. 5, pp. 700-712, 2011.
[24] Z. Ding, “Adaptive control of triangular systems with nonlinear parameterization,”
IEEE Transactions on Automatic Control, vol. 46, no. 12, pp. 1963-1968, 2001.
[25] X. Tang, G. Tao, and S. M. Joshi, “Virtual grouping based adaptive actuator failure
compensation for MIMO nonlinear systems,” IEEE Transactions on Automatic
Control, vol. 50, no. 11, pp. 1775-1780, 2005.
[26] J. Zhou, C. Wen, and G. Yang, “Adaptive backstepping stabilization of nonlinear
uncertain systems with quantized input signal,” IEEE Transactions on Automatic
Control, vol. 59, no. 2, pp. 460-464, 2014.
[27] T. P. Zhang and S. S. Ge, “Adaptive dynamic surface control of nonlinear systems
with unknown dead zone in pure feedback form,” Automatica, vol. 44, pp. 1895-
1903, 2008.
[28] S. Tong and Y. Li, “Adaptive fuzzy output feedback tracking backstepping control
of strict-feedback nonlinear systems with unknown dead zones,” IEEE Transactions
on Fuzzy Systems, vol. 20, no. 1, pp. 168-180, 2012.
[29] H. Du, H. Shao, and P. Yao, “Adaptive neural network control for a Class of lowtriangular-
structured nonlinear systems,” IEEE Transactions on Neural Networks,
vol. 17, no. 2, pp. 509-514, 2006.
[30] H. Du, S. S. Ge, and J. K. Liu, “Adaptive neural network output feedback control for
a class of non-affine non-linear systems with unmodelled dynamics,” IET Control
Theory and Applications, vol. 5, no. 3, pp. 465-477, 2011.
[31] J. Zhou, C. Zhang, and C. Wen, “Robust adaptive output control of uncertain nonlinear
plants with unknown backlash nonlinearity,” IEEE Transactions on Automatic
Control, vol. 52, no. 3, pp. 503-509, 2007.
[32] C. Wen, J. Zhou, Z. Liu, and H. Su, “Robust adaptive control of uncertain nonlinear
systems in the presence of input saturation and external disturbance,” IEEE
Transactions on Automatic Control, vol. 56, no. 7, pp. 1672-1678, 2011.
[33] J. Zhou, C. Wen, and Y. Zhang, “Adaptive output control of nonlinear systems with
uncertain dead-zone nonlinearity,” IEEE Transactions on Automatic Control, vol.
51, no. 3, pp. 504-511, 2006.
[34] J. Zhou, C. Wen, and Y. Zhang, “Adaptive backstepping control of a class of uncertain
nonlinear systems with unknown backlash-like hysteresis,” IEEE Transactions
on Automatic Control, vol. 49, no. 10, pp. 1751-1757, 2004.
[35] X. Luo, X. Wu, and X. Guan, “Adaptive backstepping fault-tolerant control for unmatched
non-linear systems against actuator dead-zone,” IET Control Theory and
Applications, vol. 4, no. 5, pp. 879-888, 2010.
[36] Y. Li, S. Qiang, X. Zhuang and O. Kaynak, “Robust and adaptive backstepping
control for nonlinear systems using RBF neural networks,” IEEE Transactions on
Neural Networks, vol. 15, no. 3, pp. 693-701, 2004.
[37] J. Zhou, “Decentralized adaptive control for large-scale time-delay systems with
dead-zone input,” Automatica, vol. 44, pp. 1790-1799, 2008.
[38] M. Chen, S. S. Ge, and B. V. E. How, “Robust adaptive neural network control
for a class of uncertain MIMO nonlinear systems with input nonlinearities,” IEEE
Transactions on Neural Networks, vol. 21, no. 5, pp. 796-812, 2010.
[39] S. H. Park and S. I. Han, “Robust-tracking control for robot manipulator with deadzone
and friction using backstepping and RFNN controller,” IET Control Theory
and Applications, vol. 5, no. 12, pp. 1397-1417, 2011.
[40] M. Chen, S. S. Ge, and B. Ren, “Adaptive tracking control of uncertain MIMO
nonlinear systems with input constraints,” Automatica, vol. 47, pp. 452-465, 2011.
[41] R. Ma and J. Zhao, “Backstepping design for global stabilization of switched nonlinear
systems in lower triangular form under arbitrary switchings,” Automatica, vol.
46, no. 11, pp. 1819-1823, 2010.
[42] C. Hua, G. Feng, and X. Guan, “Robust controller design of class of nonlinear time
delay systems via backstepping method,” Automatica, vol. 44, no. 2, pp. 567-573,
2008.
[43] C. Hua, P. X. Liu, and X. Guan, “Backstepping control for nonlinear systems with
time delays applications to chemical reactor systems,” IEEE Transactions on Indus-
trial Electronics, vol. 56, no. 9, pp. 3723-3732, 2009.
[44] Z. Zhang, S. Xu, and Y. Chu, “Adaptive stabilization for a class of non-linear state
time-varying delay systems with unknown time-delay bounded,” IET Control Theory
and Applications, vol. 4, no. 10, pp. 1905-1913, 2010.
[45] A. Levant, “Robust exact differentiation via sliding mode technique,” Automatica,
vol. 34, no. 3, pp. 379-384, 1998.
[46] H. K. Khalil, Nonlinear Systems, Prentice-Hall, New Jersey, 1996.
[47] Terasoft, Terasoft Eletro-Mechanical Engineering Control System, Terasoft, pp. 64-
76, 2007.
[48] B. C. Kuo, Automatic Control Systems, Prentice-Hall, New Jersey, 1995.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.205.164
論文開放下載的時間是 校外不公開

Your IP address is 3.135.205.164
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code