Responsive image
博碩士論文 etd-0615116-121033 詳細資訊
Title page for etd-0615116-121033
論文名稱
Title
甲酯相似分子燃料於燃燒過程生成不飽和中間產物的精簡機理研究
Skeletal mechanisms relevant to the formation of unsaturated intermediates in combustion of methyl ester fuel surrogates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-13
繳交日期
Date of Submission
2016-07-15
關鍵字
Keywords
化學動力學、燃燒、生質柴油、煤煙、多環芳香烴、精簡反應機理、計算流體力學、甲酯
Soot, Mechanism Reduction, Polycyclic Aromatic Hydrocarbons, Methyl Ester, Computational Fluid Dynamics, Combustion, Biodiesel, Chemical Kinetic
統計
Statistics
本論文已被瀏覽 5769 次,被下載 23
The thesis/dissertation has been browsed 5769 times, has been downloaded 23 times.
中文摘要
本研究之宗旨為提出甲酯相似分子燃料的精簡化學反應機理,用來模擬計算流體力學模型中的燃燒過程。甲酯分子燃料為生質柴油的主要成分,且其碳鏈長度為17到19的長鏈甲酯分子,因此其化學反應機理過於複雜無法使用於流體力學模型中。為了使其能應用於流體力學模型中,選擇短鏈的甲酯分子來做為相似分子燃料並需將其複雜的反應機理中篩選出對燃燒過程較為不敏感的反應式,並將其移除得到一個精簡的化學反應機理,使之能應用於流體力學模型中。本研究所選擇的燃料為異丁酸甲酯與丁酸甲酯來做為生質柴油的相似分子燃料。
異丁酸甲酯之化學反應機理結合多環芳香烴與煤煙的反應機理,使得其簡化機理能用來描述異丁酸甲酯相似分子燃料燃燒時,生成不飽和中間產物及煤煙的過程。丁酸甲酯反應機理是以最少反應物種來描述甲酯相似分子燃料燃燒時,生成不飽和中間產物的過程。異丁酸甲酯與丁酸甲酯的反應機理皆能在零維點火延遲、一維預混火焰以及二維非預混協流火焰實驗中得到驗證。另外使用生產速率與敏感度分析來改善其預測能力,使其預測中間產物之生成結果更能表現出燃料於實驗中的燃燒特性。
最後本模擬結果能預測出實驗數據,及其不飽合中間產物與實驗數據吻合。因此,本研究所提出的甲酯相似分子燃料精簡化學反應機理皆可運用在計算流體力學模型中模擬燃燒和生成不飽和中間產物的過程,且異丁酸甲酯精簡化學反應機理更能預測多環芳香烴與煤煙之生成。
Abstract
In this study, a skeletal kinetic mechanisms for biodiesel fuel surrogates is developed for fuel oxidation that can overcome the barrier of incorporating detailed chemistry to computational fluid dynamics (CFD) for fuel combustion. This study begins from (1) assembling mechanisms which are able to predict experimentally measured methyl isobutyrate (MIB), polycyclic aromatic hydrocarbons (PAHs) and compound (C5H10) (2) generating a minimized skeletal mechanism for methyl butanoate (MB) oxidation. Using the path flux analysis method, the minimized skeletal mechanism is obtained by the determination of a trade-off between the accuracy and mechanism size. The newly derived compact mechanisms are examined in ignition delay time in 0-D shock tube modeling, 1-D premixed burner flame, 1-D counterflow diffusion flame, and 2-D laminar diffusion flame. We carry out the error analyses introduced by the removal of species and reactions from the detailed mechanism. The rate of production (ROP) and sensitivity analysis (SA) are used to improve the predictions of skeletal mechanisms. Moreover, the revised MIB skeletal mechanism are selected to be combined with the soot sub model to obtain a skeletal mechanism which is able to predict the heavy PAHs and soot formation in pure methane flame and methane/air diffusion flame doped with MIB.
目次 Table of Contents
Resume i
論文審定書 ii
誌謝 iii
中文摘要 iv
Abstract v
Table of Contents vi
List of Figures viii
List of Tables xi
Nomenclature xii
1 Introduction 1
2 Methodology 6
2.1 Methyl isobutyrate 6
2.2 Methyl butanoate 8
2.3 Mechanism construction and reduction 9
2.3.1 Methyl isobutyrate 9
2.3.2 Methyl butanoate 12
2.4 Simulations of 0-D shock tube and 1-D premixed burner flame 12
2.5 Simulations of 1-D counterflow flame 13
2.6 Simulations of 2-D non-premixed flame 13
2.7 Soot sub model 18
3 Results and Discussion 19
3.1 Methyl isobutyrate mechanism generation 19
3.1.1 Mechanism reduction 19
3.1.2 Mechanism validation 23
3.1.3 CFD modeling and mechanism improvements 25
3.1.4 Soot prediction 33
3.1.5 Reaction pathway and contours analyses 36
3.2 Methyl butanoate mechanism generation 40
3.2.1 Mechanism reduction and validation 40
3.2.2 CFD modeling and contours analyses 48
3.3 Comparison between MIB and MB 50
4 Conclusions 52
4.1 Methyl isobutyrate 52
4.2 Methyl butanoate 53
5 References 55
參考文獻 References
1. S. Singh, D. Singh, Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review, Renewable and Sustainable Energy Reviews, 14 (2010) 200-216.
2. D.Y. Leung, X. Wu, M. Leung, A review on biodiesel production using catalyzed transesterification, Applied energy, 87 (2010) 1083-1095.
3. J. Pullen, K. Saeed, Factors affecting biodiesel engine performance and exhaust emissions–Part I: Review, Energy, 72 (2014) 1-16.
4. V. Shahir, C. Jawahar, P. Suresh, Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review, Renewable and Sustainable Energy Reviews, 45 (2015) 686-697.
5. J. Xue, T.E. Grift, A.C. Hansen, Effect of biodiesel on engine performances and emissions, Renewable and sustainable energy reviews, 15 (2011) 1098-1116.
6. K. Varatharajan, M. Cheralathan, Influence of fuel properties and composition on NO x emissions from biodiesel powered diesel engines: a review, Renewable and Sustainable Energy Reviews, 16 (2012) 3702-3710.
7. A. Demirbas, Political, economic and environmental impacts of biofuels: a review, Applied Energy, 86 (2009) S108-S117.
8. J.C. Yori, M.A. D'Amato, J.M. Grau, C.L. Pieck, C.R. Vera, Depression of the cloud point of biodiesel by reaction over solid acids, Energy & fuels, 20 (2006) 2721-2726.
9. S.J. Reaume, N. Ellis, Use of hydroisomerization to reduce the cloud point of saturated fatty acids and methyl esters used in biodiesel production, Biomass and bioenergy, 49 (2013) 188-196.
10. R.O. Dunn, H.L. Ngo, M.J. Haas, Branched-chain fatty acid methyl esters as cold flow improvers for biodiesel, Journal of the American Oil Chemists' Society, 92 (2015) 853-869.
11. M. Lapuerta, O. Armas, J. Rodriguez-Fernandez, Effect of biodiesel fuels on diesel engine emissions, Progress in energy and combustion science, 34 (2008) 198-223.
12. C.K. Westbrook, C.V. Naik, O. Herbinet, W.J. Pitz, M. Mehl, S.M. Sarathy, H.J. Curran, Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels, Combustion and Flame, 158 (2011) 742-755.
13. J.Y. Lai, K.C. Lin, A. Violi, Biodiesel combustion: advances in chemical kinetic modeling, Progress in Energy and Combustion Science, 37 (2011) 1-14.
14. W.J. Pitz, C.J. Mueller, Recent progress in the development of diesel surrogate fuels, Progress in Energy and Combustion Science, 37 (2011) 330-350.
15. L.S. Tran, B. Sirjean, P.-A. Glaude, R. Fournet, F. Battin-Leclerc, Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels, Energy, 43 (2012) 4-18.
16. S.A. Basha, K.R. Gopal, S. Jebaraj, A review on biodiesel production, combustion, emissions and performance, Renewable and sustainable energy reviews, 13 (2009) 1628-1634.
17. H. Tao, K.C. Lin, Pathways, kinetics and thermochemistry of methyl-ester peroxy radical decomposition in the low-temperature oxidation of methyl butanoate: A computational study of a biodiesel fuel surrogate, Combustion and Flame, 161 (2014) 2270-2287.
18. K.C. Lin, J.Y. Lai, A. Violi, The role of the methyl ester moiety in biodiesel combustion: A kinetic modeling comparison of methyl butanoate and n-butane, Fuel, 92 (2012) 16-26.
19. E.M. Fisher, W.J. Pitz, H.J. Curran, C.K. Westbrook, Detailed chemical kinetic mechanisms for combustion of oxygenated fuels, Proceedings of the combustion institute, 28 (2000) 1579-1586.
20. S. Gaïl, M.J. Thomson, S.M. Sarathy, S.A. Syed, P. Dagaut, P. Diévart, A.J. Marchese, F.L. Dryer, A wide-ranging kinetic modeling study of methyl butanoate combustion, Proceedings of the Combustion Institute, 31 (2007) 305-311.
21. S. Gaïl, S. Sarathy, M. Thomson, P. Diévart, P. Dagaut, Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate, Combustion and Flame, 155 (2008) 635-650.
22. S. Dooley, H.J. Curran, J.M. Simmie, Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate, Combustion and Flame, 153 (2008) 2-32.
23. W.R. Schwartz, C.S. McEnally, L.D. Pfefferle, Decomposition and hydrocarbon growth processes for esters in non-premixed flames, The Journal of Physical Chemistry A, 110 (2006) 6643-6648.
24. C.S. McEnally, L.D. Pfefferle, Improved sooting tendency measurements for aromatic hydrocarbons and their implications for naphthalene formation pathways, Combustion and flame, 148 (2007) 210-222.
25. C.S. McEnally, L.D. Pfefferle, Sooting tendencies of nonvolatile aromatic hydrocarbons, Proceedings of the Combustion Institute, 32 (2009) 673-679.
26. C.S. McEnally, L.D. Pfefferle, Sooting tendencies of oxygenated hydrocarbons in laboratory-scale flames, Environmental science & technology, 45 (2011) 2498-2503.
27. D.D. Das, C.S. McEnally, L.D. Pfefferle, Sooting tendencies of unsaturated esters in nonpremixed flames, Combustion and Flame, 162 (2015) 1489-1497.
28. V. Ramanathan, G. Carmichael, Global and regional climate changes due to black carbon, Nature geoscience, 1 (2008) 221-227.
29. H. Omidvarborna, A. Kumar, D.-S. Kim, Recent studies on soot modeling for diesel combustion, Renewable and Sustainable Energy Reviews, 48 (2015) 635-647.
30. T. Lu, C.K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, Progress in Energy and Combustion Science, 35 (2009) 192-215.
31. S. Vajda, T. Turanyi, Principal component analysis for reducing the Edelson-Field-Noyes model of the Belousov-Zhabotinskii reaction, The Journal of Physical Chemistry, 90 (1986) 1664-1670.
32. M. Valorani, F. Creta, D.A. Goussis, J.C. Lee, H.N. Najm, An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP, Combustion and Flame, 146 (2006) 29-51.
33. T. Lu, C.K. Law, A directed relation graph method for mechanism reduction, Proceedings of the Combustion Institute, 30 (2005) 1333-1341.
34. T. Lu, C.K. Law, Linear time reduction of large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane, Combustion and Flame, 144 (2006) 24-36.
35. P. Pepiot-Desjardins, H. Pitsch, An efficient error-propagation-based reduction method for large chemical kinetic mechanisms, Combustion and Flame, 154 (2008) 67-81.
36. W. Sun, Z. Chen, X. Gou, Y. Ju, A path flux analysis method for the reduction of detailed chemical kinetic mechanisms, Combustion and Flame, 157 (2010) 1298-1307.
37. X. Gou, W. Sun, Z. Chen, Y. Ju, A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms, Combustion and Flame, 157 (2010) 1111-1121.
38. B. Akih-Kumgeh, J.M. Bergthorson, Skeletal chemical kinetic mechanisms for syngas, methyl butanoate, n-heptane, and n-decane, Energy & Fuels, 27 (2013) 2316-2326.
39. J.L. Brakora, Y. Ra, R.D. Reitz, J. McFarlane, C.S. Daw, Development and validation of a reduced reaction mechanism for biodiesel-fueled engine simulations, in, SAE Technical Paper, 2008.
40. Y.-C. Liao, A reduced kinetic mechanism for polycyclic aromatic hydrocarbon formation in oxidation of a biodiesel surrogate, (2015).
41. W. Liu, R. Sivaramakrishnan, M.J. Davis, S. Som, D. Longman, T. Lu, Development of a reduced biodiesel surrogate model for compression ignition engine modeling, Proceedings of the Combustion Institute, 34 (2013) 401-409.
42. H.K. Ng, S. Gan, J.-H. Ng, K.M. Pang, Development and validation of a reduced combined biodiesel–diesel reaction mechanism, Fuel, 104 (2013) 620-634.
43. H.M. Ismail, H.K. Ng, S. Gan, T. Lucchini, A. Onorati, Development of a reduced biodiesel combustion kinetics mechanism for CFD modelling of a light-duty diesel engine, Fuel, 106 (2013) 388-400.
44. V.I. Golovitchev, J. Yang, Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications, Biotechnology advances, 27 (2009) 641-655.
45. H. An, W. Yang, A. Maghbouli, J. Li, K. Chua, A skeletal mechanism for biodiesel blend surrogates combustion, Energy Conversion and Management, 81 (2014) 51-59.
46. Z. Luo, M. Plomer, T. Lu, S. Som, D.E. Longman, A reduced mechanism for biodiesel surrogates with low temperature chemistry for compression ignition engine applications, Combustion Theory and Modelling, 16 (2012) 369-385.
47. Z. Luo, M. Plomer, T. Lu, S. Som, D.E. Longman, S.M. Sarathy, W.J. Pitz, A reduced mechanism for biodiesel surrogates for compression ignition engine applications, Fuel, 99 (2012) 143-153.
48. Y. Chang, M. Jia, Y. Li, Y. Zhang, M. Xie, H. Wang, R.D. Reitz, Development of a skeletal oxidation mechanism for biodiesel surrogate, Proceedings of the Combustion Institute, 35 (2015) 3037-3044.
49. S. Som, D. Longman, Numerical study comparing the combustion and emission characteristics of biodiesel to petrodiesel, Energy & Fuels, 25 (2011) 1373-1386.
50. B. Yang, C.K. Westbrook, T.A. Cool, N. Hansen, K. Kohse-Höinghaus, Fuel-specific influences on the composition of reaction intermediates in premixed flames of three C5H10O2 ester isomers, Physical Chemistry Chemical Physics, 13 (2011) 6901-6913.
51. N.A. Slavinskaya, U. Riedel, S.B. Dworkin, M.J. Thomson, Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames, Combustion and Flame, 159 (2012) 979-995.
52. G. Dayma, S. Sarathy, C. Togbé, C. Yeung, M. Thomson, P. Dagaut, Experimental and kinetic modeling of methyl octanoate oxidation in an opposed-flow diffusion flame and a jet-stirred reactor, Proceedings of the Combustion Institute, 33 (2011) 1037-1043.
53. C.S. McEnally, Ü.Ö. Köylü, L.D. Pfefferle, D.E. Rosner, Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples, Combustion and Flame, 109 (1997) 701-720.
54. C. Saggese, S. Ferrario, J. Camacho, A. Cuoci, A. Frassoldati, E. Ranzi, H. Wang, T. Faravelli, Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame, Combustion and Flame, 162 (2015) 3356-3369.
55. K.C. Lin, H. Tao, F.-H. Kao, C.-T. Chiu, A minimized skeletal mechanism for methyl butanoate oxidation and its application to the prediction of C3-C4 products in non-premixed flames: A base model of biodiesel fuels, Energy & Fuels, (2016).
56. S. Sarathy, S. Gaïl, S. Syed, M. Thomson, P. Dagaut, A comparison of saturated and unsaturated C 4 fatty acid methyl esters in an opposed flow diffusion flame and a jet stirred reactor, Proceedings of the Combustion Institute, 31 (2007) 1015-1022.
57. R. Kee, F. Rupley, J. Miller, M. Coltrin, J. Grcar, E. Meeks, H. Moffat, A. Lutz, G. Dixon-Lewis, M. Smooke, CHEMKIN Release 4.1, Reaction Design, San Diego, CA, (2006).
58. ANSYS, GAMBIT in: A. Inc. (Ed.), ANSYS Inc. , Canonsburg, PA.
59. ANSYS, ANSYS Fluent user's guide, in: A. Inc. (Ed.), ANSYS Inc., Canonsburg, PA, 2011.
60. S. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, (1997).
61. C.R. Shaddix, K.C. Smyth, Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames, Combustion and Flame, 107 (1996) 418-452.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code