Responsive image
博碩士論文 etd-0615116-171936 詳細資訊
Title page for etd-0615116-171936
論文名稱
Title
煉焦爐室積碳燒除模式之暫態模擬與分析
Investigation unsteady carbon burning process of a coke oven
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-06
繳交日期
Date of Submission
2016-07-15
關鍵字
Keywords
煉焦爐、CFD、暫態模擬、強制對流、積碳燒除
carbon accumulation, CFD, forced inflow effect, coke oven, carbon burning
統計
Statistics
本論文已被瀏覽 5651 次,被下載 0
The thesis/dissertation has been browsed 5651 times, has been downloaded 0 times.
中文摘要
煉焦爐爐牆、爐頂、以及昇騰管積碳在煉焦過程中會逐漸附著積碳。積碳累積至一定厚度後,將造成產氣通道部分堵塞,加料及煉焦過程中發生細煤粉與爐氣逸散汙染,推焦作業時將增大推焦阻力,嚴重時引發推焦困難,加速焦爐老化。此外,積碳層亦會影響由燃燒室傳遞至煉焦室之熱傳係數,降低熱傳效率,故清除積碳一直是焦爐維護的重點工作之ㄧ。
本研究的重點工作為建立三維煉焦爐積碳燒除暫態模型,用以模擬煉焦爐三維實際尺寸(包含加熱牆矽磚、爐頂磚、爐底磚)的積碳燒除作業。研究將進行自然對流、強制對流與插管強制對流之暫態積碳燒除模式模擬,協助現場製程選擇最佳的現場作業模式。
結果顯示積碳燒除效果隨強制空氣流量增加而越佳,可提升流量來提升燒除效果,但當流量過高時也可能造成爐壁溫度過低的情形。此外比較強制對流與插管強制對流,結果顯示質量流率約為強制對流的2/3時,其燒除速率已比直接強制對流高13%,且燒除位置接近較厚的積碳層區。因此,在有限時間內操作積碳燒除作業,以插管強制對流較為合適。
三個案例中,除了自然對流因流場不穩定,積碳燒除位置一直變化外,(插管)強制對流的積碳燒除區域很快達到穩定且變動小。因此,(插管)強制對流可用穩態模擬來評估其燒除效果,以縮短模擬所需時間。
Abstract
Carbon accumulation occurs significantly on the walls of inside a coke oven and it may cause serious blocking problems during the coke-making operation. Therefore, the coke oven is scheduled regularly to burn the accumulated carbon under maintenance. Due to the slow combustion rate of deposited carbon, the maintenance time is often long and reduces the yield rate.
The study focused on a 3D unsteady coke oven burning model to simulate the real coke oven including heat blocking materials It simulated different convection conditions, which were natural convection, force convection by air blower and force convection by a nozzle pipe, to assist field personnel to select the best operating mode.
The burning rate of solid carbon is dominated by the oxygen diffusion, so a forced inflow is proposed to increase the carbon-burning rate. However, if the air inflow rate is too high, it will lower the oven wall temperature and consequently the carbon-burning rate may be slowed down, even terminated.
The results showed that more fresh air flow could increase coke burning rate. When flow rate was too high and cool down the oven wall temperature, it may be below the brick safety temperature and the wall brick was damaged. Comparing the simulation results of force convection by air blower and a nozzle pipe, it showed that when the mass flow rate of force convection by a nozzle pipe was 33% smaller than that by air blower, the coke burning rate was 13% higher than force convection by air blower and the burning location was closer to the thicker coke zone. Thus, the method using the forced convection by a nozzle is more time-efficient to coke burning operation.
In these three conditions natural convection resulted in an unstable flow field and the coke burning position will change a lot, while the flow field of force convection by air blower could quickly reach a relatively stable state. As a result, a steady state simulation of forced convection by air blower can be used to evaluate the coke burning rate and shorten the simulation time.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第一章 序論 1
1.1研究背景 1
1.2文獻回顧 5
1.3研究目的 8
第二章 研究方法與數值模型 9
2.1研究方法 9
2.2理論模式 9
2.2.1紊流模型 10
2.2.2化學反應模型 11
2.2.3輻射模型 12
2.3幾何模型與邊界條件 13
2.4網格模型與收斂標準 18
第三章 結果與討論 20
3.1三維穩態模擬結果 20
3.2二維模型化學反應參數分析 29
3.3自然對流模型30分鐘燒除結果分析 33
3.4三維大風機強制對流模擬 37
3.4.1三維大風機強制對流模型30分鐘燒除結果分析 37
3.4.2大風機強制對流流量分析 41
3.4.3三維大風機第四加料口燒除測試 44
3.5三維插管強制對流模擬 46
3.5.1三維插管強制對流模型30分鐘燒除結果分析 46
3.5.2插管強制對流入口壓力測試 50
3.6三維燒除模型之燒除結果比較 53
第四章 結論 56
後續工作 57
第五章 參考文獻 58
參考文獻 References
1. Patrick, J. and Barranco, R., “Carbon Deposits: Formation, Nature, and Characterisation”, COMA/CRF Meeting, United Kingdom, 2006.
2. Krebs, V., Mareche, F., Furdin, G. and Dumay, D., “Contribution to the Study of Carbon Deposition in Coke Ovens”, Fuel, Vol. 73, No. 12, pp.1904-1910, 1994.
3. Hu, Z. J. and Huttinger, K. J., “Mechanisms of Carbon Deposition-a Kinetic Approach”, Carbon, Vol. 40, No. 4, pp. 624-628, 2002.
4. Norinaga, K. and Huttinger, K. J., “Kinetics of Surface Reactions in
Carbon Deposition from Light Hydrocarbons”, Carbon, Vol. 41, No. 8, pp.1509-1514, 2003.
5. Fang, Y. Z., Huang, P., Zhang, Z., Cao, Y. P. and Jin, M. L., “Analysis on the Growth Mechanism of Carbon Deposits in Coke Oven”, Clean Coal Technology, Vol. 17, No. 5, pp. 36-39, 2011. (In Chinese)
6. Krebs, V., Furdin, G., Mareche, J. F. and Dumay, D., “Effects of Coal Moisture Content on Carbon Deposition in Coke Ovens”, Fuel, Vol. 75,No. 8, pp. 979-986, 1996.
7. Nakagawa, T.,Suzuki, T.,Furusawa, A.,Maeno, Y.,Komaki, I. and Nishikawa, K., “Influence of fine particles on carbon deposition in the coke oven chamber”, Fuel, Vol. 77,No. 11, pp. 1141-1146, 1998.
8. Wang, Z. Z., Zhan, Z. F., Wang, W. D., Zhang, W. D., Zhang, X. Q. and Wang, H. S., “Analysis and Research on Coal Moisture Control Technology”, Applied Energy Technology, No. 3, pp. 5-9, 2014. (In Chinese)
9. Adomeit, G., Hocks, W. and Henriksen, K., “Combustion of a Carbon Surface in a Stagnation Point Flow Field”, Combustion and Flame, Vol.59, pp. 273-288. 1985.
10. Yi, F., Fan, J., Ki, D., Lu, S., and Luo, K., “Three-dimensional Timedependent Numerical Simulation of a Quiescent Carbon Combustion in Air”, J. Fuel., Vol. 90, pp. 1522-1528. 2012.
11. Zymla, V. and Honnart, F., “Coke Oven Carbon Deposits Growth and Their Burning Off ”, ISIJ International, Vol. 47, No. 10, pp. 1422-1431.2007.
12. Hang, J. G., “Simulation of Burning Off Carbon Deposition in Coke Oven ”, National Cheng Kung University Department of Aeronautics and Astronautics Engineering Master’s Thesis.2014.
13. Nikrityuk, P. A., Grabner, M., Kestel, P. and Meyer, B., “Numerical Study of the Influence of Heterogeneous Kinetics on the Carbon Consumption by Oxidation of a Single Coal Particle”, J. of Fuel, Vol. 114, pp. 88-98.2013.
14. Incropera, F. P., Dewitt, D. P., Bergman, T. L. and Lavine, A. S., Fundamentals of Heat and Mass Transfer, 6th edit., John Wiley and Sons.2005.
15. Fedorov, A. G. and Viskanta, R., “Turbulent Natural Convection Heat Transfer in an Asymmetrically Heated, Vertical Parallel-Plate Channel”, Int. J. Heat Mass Transfer, Vol. 40, No. 16, pp. 3849-3860. 1997.
16. Tennekes, H. and Lumley, J. L., “A First Course in Turbulence”, The MIT Press. 1972.
17. Hinze, J. O., “Turbulence”, McGraw-Hill. 2nd ed. 1975.
18. Kou, K. K. and Acharya, R., Fundamentals of Turbulent and Multiphase Combustion, John Wiley & Sons, Inc. 2012.
19. Wilcox, D. C., Turbulence Modeling For CFD, 3rd ed., DWC Industries,Inc. 2006.
20. Spalding, D. B., “Mixing and Chemical Reaction in Steady Confined Turbulent Flames” Symposium (Int.) on Combustion, Vol. 13, No. 1, pp.649-657, 1971.
21. Magnussen, B. F. and Hjertager, B. H., “On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion” Symposium (Int.) on Combustion, Vol. 16, pp. 719-729,1977.
22. Zhou. L. X., Combustion Theory and Chemical Fluid Dynamics, Science Press, Moscos. 1986.
23. McGee, H. A., Molecular Engineering, McGraw-Hill, New York. 1991.
24. Kuo, K. K. Y., Principle of Combustion, John Wiley and Sons, New York.1986.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.125.2
論文開放下載的時間是 校外不公開

Your IP address is 3.138.125.2
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code