Responsive image
博碩士論文 etd-0615118-154724 詳細資訊
Title page for etd-0615118-154724
論文名稱
Title
可撓式薄膜電晶體開發與物理機制建立
Development and Physical Mechanisms Establishment of Flexible Thin Film Transistors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-06
繳交日期
Date of Submission
2018-07-15
關鍵字
Keywords
彎曲應力、可撓式顯示器、熱膨脹應力、低溫多晶矽薄膜電晶體、自我加熱效應、高溫負電壓不穩定性
Self-Heating Effects, Flexible Display, Low Temperature Polycrystalline Silicon, Mechanical Bending Stress, Negative Bias Temperature Instability, Thermal Expansion Stress
統計
Statistics
本論文已被瀏覽 5684 次,被下載 69
The thesis/dissertation has been browsed 5684 times, has been downloaded 69 times.
中文摘要
當今可撓式薄膜電晶體(Flexible Thin Film Transitors; Flexible TFTs)應用層面甚廣,無論學術界與工業界都投入相當多的資源研發。市面上已有產品採用固定曲率彎曲的顯示器,然而從可撓式顯式器的應用深度而言,小曲率(R=2mm)彎曲及高解析的應用還尚未成熟,而從應用廣度而言,可重複彎曲摺疊及完全可撓的應用也還有很大的進展空間。本論文探討低溫多晶矽薄膜電晶體(Low Temperature Polycrystalline Silicon TFTs; LTPS TFTs)應用於可撓式顯示器中所面臨的性能、電應力、機械應力的議題。
本論文第一部分將會探討低溫多晶矽製程於可撓式聚醯亞胺(Polyimide)基板上的性能及可靠度議題,polyimide基板為目前面板、電子工業常用之可撓式塑膠基板之材料,其具400-500oC的製程熱預算(thermal budget),此外,polyimide製程可整合於溶液製程,對噴墨印刷(ink-jet printing)及旋塗(spin coating)製成相容性高。Poly-Si TFT製程於Polyimide上會面臨幾種挑戰,其一為Polyimide的熱膨脹係數(coefficient of thermal expansion; CTE)較玻璃高,意謂在面臨製程中的溫度時會產生熱膨脹進而對TFT內的poly-Si及閘極絕緣層(Gate insulator; GI)造成劣化,無論對於性能及可靠度(negative bias temperature instability; NBTI)都會造成影響,因此,我們藉由調變基板緩衝層(buffer layer)厚度抑制基板熱膨脹的劣化,同時也最佳buffer layer厚度以利散熱。我們探討了polyimide基板離型應力對於Flexible Poly-Si TFTs的影響,由於現行Flexible LTPS TFTs所用之polyimide基板還需要先成長於玻璃基板再加熱固化、離型,因此在離型時所產生之機械應力對元件會產生劣化,此部分我們比較了單閘極結構及雙閘極結構之元件後發現離型應力使buffer layer會產生額外的電荷注入,致使起始電壓(Vt)產生偏移並進一步產生額外漏電途徑。
本論文第二部分著重探討Flexible LTPS TFTs的大電流效應,包含熱載子效應和自熱效應。通過使用I-V和各種頻率的C-V測量,可以明確地通過自熱效應產生的缺陷的位置。透過power law fitting可得知大電流所造成的劣化源於不對稱負偏壓溫度不穩定性(NBTI)。 機制釐清後,再調整緩衝層的製造,可以緩解自熱效應,從而提高散熱能力。
本文第三部分研究了長期機械應力下的應力分佈和應力對Flexible LTPS TFTs電性的影響。無論是否使用常規的準分子激光退火(ELA)或更新的金屬誘導橫向結晶(MILC)工藝,多晶矽(poly-Si)膜中的表面形態是一個問題。根據應力模擬,柵極絕緣體(GI)中的非均勻應力在多晶矽/柵極絕緣體邊緣附近以及多晶矽突起的兩側更為明顯。該應力導致柵極絕緣體的缺陷並導致不均勻的劣化現象,影響了薄膜電晶體(TFT)的性能和可靠性。彎曲程度與彎曲軸(通道長度軸,通道寬度軸)或彎曲類型(壓縮,拉伸)無關,這意味著退化主要受突起效應的影響。此外,通過在經受長期彎曲應力之後利用長期電偏壓應力,顯然在子通道區域中載流子注入是嚴重的,這證實突起的影響是至關重要的。為了消除多晶矽中表面形態的影響,在結晶過程中採用三種激光能量密度來控制突出高度。具有最低突起的裝置在經歷長期彎曲之後表現出最小的劣化。
本文第四部分著重研究重複性的單軸彎曲應力對多晶薄膜電晶體中偏壓的劣化行為的影響。在通道寬度方向以曲率10mm半徑重複彎曲100,000次,發現bending的次數導致的劣化形為會由poly-Si漸漸轉致通道劣化,造成到嚴重的起始電壓退化和異常寄生通道。根據應力模擬,在多晶矽和GI之間的通道邊緣兩側發生最強的機械應力。由於這些應力在GI中會產生氧化層缺陷,因此起始電壓偏移和寄生電流路徑的劣化可歸因於此強烈的機械應力集中處所造成的電子捕獲。此外,隨著TFT尺寸的減小,劣化變得嚴重。
本文第五部分將縮小彎曲曲率至R=2mm,並在此情況下找出最佳化應力釋放結構,根據之前的研究可得知重複的機械彎曲損壞了GI,導致載子注入於其中。此外,發現通道寬度方向的彎曲後的退化比通道長軸方向的彎曲更明顯。為了減輕這種退化,提出了一種有機溝渠結構的可撓式LTPS TFT來提高機械應力耐力。 在R = 2mm的機械彎曲經過100,000次迭代之後,具有該有機溝渠結構的元件中的劣化可被有效抑制。
Abstract
Recently, flexible thin film transistor applications are widely used, both academics and industry have invested considerable resources in research and development. From the application depth of the flexible display, the application of small curvature (R = 2mm) bending and high resolution is still not yet mature. From the application breadth, the application of the repetitive mechanical bending and fully flexible applications also have a lot of room for progress.
The first section of this dissertation will discuss the performance and reliability issues of the low-temperature polysilicon fabricated on the polyimide substrate. The Poly-Si TFTs fabricated on Polyimide will face several challenges. For example, coefficient of thermal expansion (CTE) of polyimide is higher than the glass, which means that in the process of the temperature will produce thermal expansion and then the TFT Poly-Si and gate insulator (GI), which can affect the performance and reliability (NBTI). Therefore, the thickness of the buffer layer is adjusted to alleviate the substrate thermal expansion of the deterioration.
The second section systematically studies high current-induced effects, hot-carrier effects, and self-heating effects in flexible low temperature polycrystalline silicon thin film transistors (LTPS TFTs) fabricated on polyimide (PI). By utilizing I-V and various-frequency C-V measurements, the exact location of defects generated by self-heating effects can be clarified
In the third section, we are going to discuss the degradation mechanism of flexible LTPS TFTs after undergoing long-term bend mechanical stress. This section investigates the stress distribution while undergoing long-term mechanical stress and the influence of stress on electrical characteristics. Surface morphology in polycrystalline silicon (poly-Si) film is an issue regardless of whether conventional excimer laser annealing (ELA) or the newer metal-induced lateral crystallization (MILC) process is used To eliminate the influence of surface morphology in poly-Si, three kinds of laser energy density were used during crystallization to control the protrusion height.
The fourth section investigates the effect of repeated uniaxial mechanical stress on bias-induced degradation behavior in polycrystalline thin film transistors. After 10,000 and 100,000 iterations of channel-width-direction mechanical compression, serious threshold voltage degradation and an abnormal hump are observed.
The fifth section investigates flexible low temperature polycrystalline silicon thin film transistors suffer from strong mechanical stress and demonstrate severe degradation of electrical characteristics at bending radii smaller than 2mm. Our previous study showed repetitive mechanical bending damages the gate insulator, causing carriers to trap into it. Here, degradation after channel width-axis direction bending was found to be more pronounced than after channel length-axis bending. In order to alleviate this degradation, an organic structure flexible LTPS TFT was proposed to enhance mechanical stress endurance.
目次 Table of Contents
論文審定書 i
公開授權書 ii
摘要 iii
Abstract vii
Figure Captions xiii
Chapter 1 1
1.1 Basic Background 1
1.1.1 Overview of Active Matrix Flat-Panel Displays 1
1.1.2 Overview of Flexible LTPS Displays 2
Reference 4
Chapter 2 Parameter Extraction and Measurement Technique 9
2.1 Method of Device Parameter Extraction 9
2.1.1 Determination of threshold voltage (VT) 9
2.1.2 Determination of the subthreshold swing 9
2.1.3 The carrier mobility extraction method 10
Reference 11
Chapter 3 14
3.1 Introduction 14
3.2 Experiment 15
3.3 Result and Discussion 17
3.4 Summary 21
Reference 22
Chapter 4 31
4.1 Introduction 31
4.2 Experiment 33
4.3 Result and Discussion 34
4.4 Summary 40
Reference 41
Chapter 5 51
5.1 Introduction 52
5.2 Experiment 54
5.3 Result and Discussion 55
5.4 Summary 60
Reference 62
Chapter 6 76
6.1 Introduction 76
6.2 Experiment 77
6.3 Result and Discussion 79
6.4 Summary 83
Reference 84
Chapter 7 93
7.1 Introduction 93
7.2 Experiment 95
7.3 Result and Discussion 95
7.4 Summary 98
Reference 100
Chapter 8 106
Publication List 109
Vita 簡 歷 110
參考文獻 References
[1.1] Kuriyama, Hiroyuki, et al. "High mobility poly-Si TFT by a new excimer laser annealing method for large area electronics." Electron Devices Meeting, 1991. IEDM'91. Technical Digest., International. IEEE, 1991.
[1.2] Yoneda, Kiyoshi, Ryoichi Yokoyama, and Tsutomu Yamada. "Development trends of LTPS TFT LCDs for mobile applications." VLSI Circuits, 2001. Digest of Technical Papers. 2001 Symposium on. IEEE, 2001.
[1.3] Nomura, Kenji, et al. "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors." Nature 432.7016 (2004): 488-492.
[1.4] Yao, Jianke, et al. "Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy." IEEE Transactions on Electron Devices58.4 (2011): 1121-1126.
[1.5] N. Münzenrieder, L. Petti, C. Zysset, D. Görk, L. Büthe, G. A. Salvatore, and Ge. Tröster, “Investigation of gate material ductility enables flexible a-IGZO TFTs bendable to a radius of 1.7 mm,” Solid-State Device Research Conference (ESSDERC), 2013 Proceedings of the European. IEEE, p. 362-365, 2013
[1.6] H. Gleskova, S. Wagner and Z. Suo, "a-Si: H thin film transistors after very high strain," Journal of Non-Crystalline Solids, 266, pp. 1320-1324, 2000
[1.7] C. B. Park, J. J. Kim, H. Na, T. H. Moon, S. S. Yoo and M. S. Yang, “Effect of Island Configuration and Neutral Axis Location for Mechanical Bending Strain on a-IGZO Thin Film Transistors,” ECS Trans.,vol. 66, issue 1, pp. 241-247, 2015
[1.8] http://www.gsmarena.com/lg_roadmap_promises_bending_foldable_and_rollable_screens-news-10176.php
[2.1] D. K. Schroder, Semiconductor material and device characterization: John Wiley & Sons, 2006.
[3.1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488-492, Nov. 2004.
[3.2] C.-T. Tsai, T.-C. Chang, S.-C. Chen, I. Lo, S.-W. Tsao, M.-C. Hung, J.-J. Chang, C.-Y. Wu, and C.-Y. Huang, “Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor,” App. Phys. Lett. , vol. 96, no. 24, pp. 242105, Jun. 2010.
[3.3] T.-C. Chen, T.-C. Chang, C.-T. Tsai, T.-Y. Hsieh, S.-C. Chen, C.-S. Lin, M.-C. Hung, C.-H. Tu, J.-J. Chang, and P.-L. Chen, “Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress,” App. Phys. Lett., vol. 97, no. 11, pp. 112104, Sep. 2010.
[3.4] P.-Y. Liao, T.-C. Chang, T.-Y. Hsieh, M.-Y. Tsai, B.-W. Chen, Y.-H. Tu, A.-K. Chu, C.-H. Chou, J.-F. Chang, “Investigation of carrier transport behavior in amorphous In-Ga-Zn-O thin film transistors”, Jpn. J. Appl. Phys., 54, 094101 2015.
[3.5] C.-H. Pan, T.-C. Chang, T.-M. Tsai, K.-C. Chang, T.-J. Chu, W.-Y. Lin, M.-C. Chen, S. M. Sze,“Confirmation of Filament Dissolution Behavior by Analyzing Electrical Field Effect during Reset Process in Oxide-based RRAM”. Appl. Phys. Lett. Vol.109, no.13, pp.133503 (2016).
[3.6] T.-C. Chang, F.-Y. Jian, S.-C. Chen, and Y.-T. Tsai, “Developments in nanocrystal memory,” Mater. Today, vol. 14, no. 12, pp. 608-615, Dec. 2011.
[3.7] M.-C. Chen, T.-C. Chang, C.-T. Tsai, S.-Y. Huang, S.-C. Chen, C.-W. Hu, S. M. Sze, and M.-J. Tsai, “Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films,” App. Phys. Lett., vol. 96, no. 26, pp. 262110, Jun. 2010.
[3.8] Y.-E. Syu, T.-C. Chang, T.-M. Tsai, Y.-C. Hung, K.-C. Chang, M.-J. Tsai, M.-J. Kao, and S. M. Sze, “Redox Reaction Switching Mechanism in RRAM Device With Structure,” IEEE Electron Device Lett. , vol. 32, no. 4, pp. 545-547, Apr. 2011.
[3.9] C.-F. Huang, Y.-J. Yang, C.-Y. Peng, F. Yuan, and C. Liu, “Mechanical strain effect of n-channel polycrystalline silicon thin-film transistors,” App. Phys. Lett., vol. 89, no. 10, pp. 3502, Sep. 2006.
[3.10] P.-C. Kuo, A. Jamshidi-Roudbari, and M. Hatalis, “Effect of mechanical strain on mobility of polycrystalline silicon thin-film transistors fabricated on stainless steel foil,” App. Phys. Lett., vol. 91, no. 24, pp. 243507, Dec. 2007.
[3.11] B.-W. Chen, T.-C. Chang, Y.-J. Hung, T.-Y. Hsieh, M.-Y. Tsai, P.-Y. Liao, B.-Y. Chen, Y.-H. Tu, Y.-Y. Lin, and W.-W. Tsai, “Impact of repeated uniaxial mechanical strain on p-type flexible polycrystalline thin film transistors,” App. Phys. Lett., vol. 106, no. 18, pp. 183503, May 2015.
[3.12] B.-W. Chen, T.-C. Chang, Y.-J. Hung, S.-P. Huang, P.-Y. Liao, C.-Y. Yang, A.-K. Chu, T. T.-J. Wang, T.-C. Chang, and B.-Y. Su, “Effects of Repetitive Mechanical Bending Strain on Various Dimensions of Foldable Low Temperature Polysilicon TFTs Fabricated on Polyimide,” IEEE Electron Device Lett., vol.37, no. 8, June 2016, pp. 1010 – 1013.
[3.13] J. H. Park, K. H. Seok, Z. Kiaee, H. Y. Kim, H. J. Chae, S. K. Lee and S. K. Joo,. Thermal stress effects on the electrical properties of p-channel polycrystalline-silicon thin-film transistors fabricated via metal-induced lateral crystallization. IEEE Trans. on Semiconductor Manufacturing, 28(1), 35-40. Dec. 2014.
[3.14] S. Utsunomiya, T. Kamakura, M. Kasuga, M. Kimura, W. Miyazawa, S. Inoue, and T. Shimoda, “Flexible color AM-OLED display fabricated using surface free technology by laser ablation/annealing (SUFTLA) and ink-jet printing technology,” SID Symp. Dig. Tech., vol. 34, no. 1, pp. 864–867, May 2003.
[3.15] D.-U. Jin, J.-S. Lee, T.-W. Kim, S. G. An, D. Stryakhilev, Y. S. Pyo, H. S. Kim, D. B. Lee, Y.-G. Mo, H.-D. Kim, and H. K. Chung, “World’s largest (6.5 in.) flexible full-color top-emission AMOLED display on plastic film and its bending properties,” in Proc. SID Symp. Dig., pp. 983–985, Jun. 2009.
[3.16] R. E. Proano, R. S. Misage, and D. G. Ast, “Development and electrical roperties of undoped polycrystalline silicon thin-film transistors,” IEEE trans. Electron Devices, vol. 36, no. 9, pp. 1915–1922, Sep. 1989.
[3.17] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys., vol. 53, no. 2, pp. 1193–1202, Feb. 1982.
[3.18] S.-M. Sze, Semiconductor Devices: Physics and Technology. Hoboken,NJ, USA: Wiley, 2002.
[3.19] J. S. Im and H. J. Kim, “Phase transformation mechanism involved in excimer laser crystallization of amorphous silicon films,” Appl. Phys. Lett., vol. 63, no. 14, pp. 1969–1971, Jul. 1993.
[3.20] James B. Boyce and Ping Mei. “Laser crystallization for polycrystalline silicon device applications.” Springer, volume 37, pp. 94–146., 2000.
[3.21] Y. Morimoto, Y. Jinno, K. Hirai, H. Ogata, T. Yamada, and K. Yoneda (1997). “Influence of the Grain Boundaries and Intragrain Defects on the Performance of Poly‐Si Thin Film Transistors.” J. Electrochem. Soc. volume 144, issue 7, 2495-2501, Apr. 1997.
[3.22] C.-Y. Chen, J.-W. Lee, S.-D. Wang, M.-S. Hsieh, P.-H. Lee, W.-C. Cheng, H.-Y. Lin, K.-L. Yeh, T.-F. Lei, “Negative bias temperature instability in low-temperature polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 2993–3000, Dec. 2006..
[3.23] C.-S. Lin, Y.-C. Chen, T.-C. Chang, F.-Y. Jian, W.-C. Hsu, Y.-J. Kuo, C.-H. Dai, T.-C. Chen, W.-H. Lo, and T.-Y. Hsieh, “NBTI degradation in LTPS TFTs under mechanical tensile strain,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 907-909, Jun. 2011.
[3.24] M. A. Alam, H. Kufluoglu, D. Varghese, and S. Mahapatra,“A comprehensive model for PMOS NBTI degradation: Recent progress,”Microelectron. Rel., vol. 47, no. 6, pp. 853-862, Jun. 2007.
[3.25] D. K. Schroder,“Negative bias temperature instability: What do we understand?,” Microelectron. Rel., vol. 47, no. 6, pp. 841-852, Jun. 2007.
[4.1] S. Utsunomiya, T. Kamakura, M. Kasuga, M. Kimura, W. Miyazawa, S. Inoue, and T. Shimoda, “Flexible color AM-OLED display fabricated using surface free technology by laser ablation/annealing (SUFTLA) and ink-jet printing technology,” SID Symp. Dig. Tech., vol. 34, no. 1, pp. 864–867, May 2003.
[4.2] D.-U. Jin, J.-S. Lee, T.-W. Kim, S. G. An, D. Stryakhilev, Y. S. Pyo, H. S. Kim, D. B. Lee, Y.-G. Mo, H.-D. Kim, and H. K. Chung, “World’s largest (6.5 in.) flexible full-color top-emission AMOLED display on plastic film and its bending properties,” in Proc. SID Symp. Dig., pp. 983–985, Jun. 2009.
[4.3] B.-W. Chen, T.-C. Chang, Y.-J. Hung, T.-Y. Hsieh, M.-Y. Tsai, P.-Y. Liao, B.-Y. Chen, Y.-H. Tu, Y.-Y. Lin, and W.-W. Tsai, “Impact of repeated uniaxial mechanical strain on p-type flexible polycrystalline thin film transistors,” App. Phys. Lett., vol. 106, no. 18, pp. 183503, May 2015.
[4.4] B.-W. Chen, T.-C. Chang, Y.-J. Hung, S.-P. Huang, P.-Y. Liao, C.-Y. Yang, A.-K. Chu, T. T.-J. Wang, T.-C. Chang, and B.-Y. Su, “Effects of Repetitive Mechanical Bending Strain on Various Dimensions of Foldable Low Temperature Polysilicon TFTs Fabricated on Polyimide,” IEEE Electron Device Lett., vol.37, no. 8, pp. 1010 – 1013., June 2016.
[4.5] G. Fortunato, A. Pecora, and L. Maiolo, "Polysilicon thin-film transistors on polymer substrates," Materials Science in Semiconductor Processing, vol. 15, no. 6, pp. 627-641, Dec 2012.
[4.6] G. Fortunato, M. Cuscuna, P. Gaucci, L. Maiolo, L. Mariucci, A. Pecora, A. Valletta, F. Templier, "Self-Heating Effects in p-Channel Polysilicon TFTs Fabricated on Different Substrates," J. Korean Phys. Soc., vol. 54, no. 1, pp. 455-462, Jan 2009.
[4.7] P. Gaucci, L. Mariucci, A. Valletta, A. Pecora, G. Fortunato, and F. Templier, "Electrical stability in self-aligned p-channel polysilicon thin film transistors," Thin Solid Films, vol. 515, no. 19, pp. 7571-7575, Jul 2007.
[4.8] L. Maiolo, L.Maiolo, M. Cuscuna, L. Mariucci, A. Minotti, A. Pecora, D. Simeone, A. Valletta, G. Fortunato , "Analysis of self-heating related instability in n-channel polysilicon thin film transistors fabricated on polyimide," Thin Solid Films, vol. 517, no. 23, pp. 6371-6374, Oct 2009.
[4.9] J. P. Colinge, "Reduction of Kink Effect in Thin-Film Soi Mosfets,", IEEE Electron Device Lett., vol. 9, no. 2, pp. 97-99, Feb 1988.
[4.10] K. Kato, T. Wada, K. Taniguchi, “Analysis of kink characteristics in Silicon-on-insulator MOSFET's using two-carrier modeling,” IEEE Trans. Electron Devices, vol. 32, no. 2, pp.458–462, Feb. 1985.
[4.11] I. M. Hafez, G. Ghibaudo, and F. Balestra, "Analysis of the Kink Effect in Mos-Transistors," IEEE Trans. Electron Devices, vol. 37, no. 3, pp. 818–821, Mar 1990.
[4.12] K.C. Moon, J.-H. Lee, M.-K. Han, “The Study of Hot-Carrier Stress on Poly-Si TFT Employing C–V Measurement,” IEEE Trans. Electron Devices, vol. 52 ,no. 4, pp. 512–517, Apr 2005.
[4.13] G. Fortunato, A. Pecora, G. Tallarida, L. Mariucci, C. Reita, P. Migliorato, “Hot carrier effects in n-channel polycrystalline silicon thin-film transistors: A correlation between off-current and transconductance variations,” IEEE Trans. Electron Devices, 41(3), pp. 340-346. Mar 1994.
[4.14] A. Bhoolokam, M. Nag, A. Chasin, S. Steudel, J. Genoe, G. Gelinck, G. Groeseneken, P. Heremans, “Analysis of frequency dispersion in amorphous In–Ga–Zn–O thin-film transistors,” Journal of Information Display, vol. 16, no. 1 ,pp. 31–36, Dec 2014.
[4.15] P.-Y. Liao, T.-C. Chang, W.-C. Su, Y.-J. Chen, B.-W. Chen, T.-Y. Hsieh, C.-I Yang, Y.-Y. Huang, H.-M. Chang, S.-C. Chiang, “Effect of mechanical-strain-induced defect generation on the performance of flexible amorphous In–Ga–Zn–O thin-film transistors”, Appl. Phys. Express ,vol. 9, issue 12, pp. 124101, Nov 2016.
[4.16] Y.-C. Tsao, T.-C. Chang, H.-M. Chen, B.-W. Chen, H.-C. Chiang, G.-F. Chen, Y.-C. Chien, Y.-H. Tai, Y.-J. Hung, S.-P. Huang, C.-I Yang, W.-C. Chou, “Abnormal hump in capacitance–voltage measurements induced by ultraviolet light in a-IGZO thin-film transistors”, Appl. Phys. Lett., vol. 110, issue 2, pp. 023501, Jan 2017.
[4.17] S. M. Sze, and Kwok K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006) 3rd ed., pp. 227.
[4.18] C.-Y. Chen, J.-W. Lee, S.-D. Wang, M.-S. Hsieh, P.-H. Lee, W.-C. Cheng, H.-Y. Lin, K.-L. Yeh, T.-F. Lei, “Negative bias temperature instability in low-temperature polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 2993–3000, Dec. 2006.
[4.19] C.-S. Lin, Y.-C. Chen, T.-C. Chang, F.-Y. Jian, W.-C. Hsu, Y.-J. Kuo, C.-H. Dai, T.-C. Chen, W.-H. Lo, and T.-Y. Hsieh, “NBTI degradation in LTPS TFTs under mechanical tensile strain,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 907-909, Jun. 2011.
[4.20] M. A. Alam, H. Kufluoglu, D. Varghese, and S. Mahapatra,“A comprehensive model for PMOS NBTI degradation: Recent progress,”Microelectron. Rel., vol. 47, no. 6, pp. 853-862, Jun. 2007.
[4.21] D. K. Schroder,“Negative bias temperature instability: What do we understand?,” Microelectron. Rel., vol. 47, no. 6, pp. 841-852, Jun. 2007.
[4.22] P. Gaucci, A. Valletta, L. Mariucci, A. Pecora, L. Maiolo and G. Fortunato,. Analysis of self-heating-related instability in self-aligned p-channel polycrystalline-silicon thin-film transistors. IEEE Electron Device Lett., 31(8), 830-832. Aug. 2010.
[4.23] M. Miyasaka, H. Hara, N. Karaki, S. Inoue, H. Kawai, and S. Nebashi, "Technical obstacles to thin film transistor circuits on plastic," Jpn. J. Appl. Phys., vol. 47, no. 6, pp. 4430-4435, Jun 2008.
[5.1] Nomura, K. ; Ohta, H. ; Takagi, A. ; Kamiya, T. ; Hirano, M. ; Hosono, H. Room-temperature Fabrication of Transparent Flexible Thin-film Transistors Using Amorphous Oxide Semiconductors, Nature 2004, 432, 488-492
[5.2] Tsai, C.-T. ; Chang, T.-C. ; Chen, S.-C. ; Lo, I.-K. ; Tsao, S.-W. ; Hung, M.-C. ; Chang, J.-J. ; Wu, C.-Y. ; Huang, C.-Y. Influence of Positive Bias Stress on N2O Plasma Improved InGaZnO Thin Film Transistor, Appl. Phys. Lett. 2010, 96, 242105
[5.3] Chen, T.-C. ; Chang, T.-C. ; Tsai, C.-T. ; Hsieh, T.-Y. ; Chen, S.-C. ; Lin, C.-S. ; Hung, M.-C. ; Tu, C.-H. ; Chang, J.-J. ; Chen, P.-L. Behaviors of InGaZnO Thin Film Transistor under Illuminated Positive Gate-bias Stress, Appl. Phys. Lett. 2010, 97, 112104
[5.4] Liao, P.-Y. ; Chang, T.-C. ; Hsieh, T.-Y. ; Tsai, M.-Y. ; Chen, B.-W. ; Tu, Y.-H. ; Chu, A.-K. ; Chou, C.-H. ; Chang, J.-F. Investigation of Carrier Transport Behavior in Amorphous In-Ga-Zn-O Thin Film Transistors, Jpn. J. Appl. Phys 2015, 54, 094101
[5.5] Chen, B. W. ; Chang, T. C. ; Hung, Y. J. ; Hsieh, T. Y. ; Tsai, M. Y. ; Liao, P. Y. ; Tsai, W. W. ;Chiang, W. J. ; Yan, J. Y. Investigation of Temperature-dependent Asymmetric Degradation Behavior Induced by Hot Carrier Effect in Oxygen Ambiance in In–Ga–Zn-O Thin Film Transistors. Thin Solid Films 2014, 572, 33-38.
[5.6] Pan, C. H. ; Chang, T. C. ; Tsai, T. M. ; Chang, K. C. ; Chu, T. J. ; Lin, W. Y. ; Chen, M. C. ; Sze, S. M. Confirmation of Filament Dissolution Behavior by Analyzing Electrical Field Effect during Reset Process in Oxide-based RRAM. Appl. Phys. Lett. 2016, 109, 133503.
[5.7] Chang, T. C. ; Jian, F. Y. ; Chen, S. C. ; Tsai, Y. T. Developments in Nanocrystal Memory. Mater. Today 2011, 14, 608-615.
[5.8] Chen, M. C. ; Chang, T. C. ; Tsai, C. T. ; Huang, S. Y. ; Chen, S. C. ; Hu, C. W. ; Sze, S. M. ; Tsai, M. J. Influence of Electrode Material on the Resistive Memory Switching Property of Indium Gallium Zinc Oxide Thin Films. Appl. Phys. Lett. 2010, 96(26), 262110.
[5.9] Syu, Y. E. ; Chang, T. C. ; Tsai, T. M. ; Hung, Y. C. ; Chang, K. C. ; Tsai, M. J. ; Kao, M. J. ; Sze, S. M. Redox Reaction Switching Mechanism in RRAM Device With Structure. IEEE Electron Device Lett. 2011, 32(4), 545-547.
[5.10] Huang, C. F. ; Yang, Y. J. ; Peng, C. Y. ; Yuan, F. ; Liu, C. W. Mechanical Strain Effect of N-channel Polycrystalline Silicon Thin-film Transistors. Appl. Phys. Lett. 2006, 89(10), 3502.
[5.11] Kuo, P. C. ; Jamshidi-Roudbari, A. ; Hatalis, M. Effect of Mechanical Strain on Mobility of Polycrystalline Silicon Thin-film Transistors Fabricated on Stainless Steel Foil. Appl. Phys. Lett. 2007, 91(24), 243507.
[5.12] Peng, I. H. ; Liu, P. T. ; Wu, T. B. Effect of Bias Stress on Mechanically Strained Low Temperature Polycrystalline Silicon Thin Film Transistor on Stainless Steel Substrate. Appl. Phys. Lett. 2009, 95(4), 041909.
[5.13] Lin, C. S. ; Chen, Y. C. ; Chang, T. C. ; Jian, F. Y. ; Hsu, W. C. ; Kuo, Y. J.; Dai, C. H. ; Chen, T.C. ; Lo, W. H. ; Hsieh, T. Y. ; Shih, J. M. NBTI Degradation in LTPS TFTs under Mechanical Tensile Strain. IEEE Electron Device Lett. 2011, 32(7), 907-909.
[5.14] Chen, B. W. ; Chang, T. C. ; Hung, Y. J. ; Hsieh, T. Y. ; Tsai, M. Y. ; Liao, P. Y. ; Liao, B. Y. ; Chen, B. Y. ; Tu, Y. H. ; Lin, Y. Y. ; Tsai, W. W. ; Yan, J. Y. Impact of Repeated Uniaxial Mechanical Strain on P-type Flexible Polycrystalline Thin Film Transistors. Appl. Phys. Lett. 2015, 106(18), 183503.
[5.15] Fan, C. L. ; Chen, M. C. Correlation between Electrical Characteristics and Oxide/Polysilicon Interface Morphology for Excimer-laser-annealed Poly-Si TFTs. J. Electrochem. Soc. 2002, 149(10), G567-G573.
[5.16] Sugawara, Y. ; Uraoka, Y. ; Yano, H. ; Hatayama, T. ; Fuyuki, T. ; Mimura, A. Crystallization of Double-layered Silicon Thin Films by Solid Green Laser Annealing for High-performance Thin-film Transistors. IEEE Electron Device Lett. 2007, 28(5), 395-397.
[5.17] Jun, M. C. ; Kim, Y. S. ; Han, M. K. ; Kim, J. W. ; Kim, K. B. Polycrystalline Silicon Oxidation Method Improving Surface Roughness at the Oxide/Polycrystalline Silicon Interface. Appl. Phys. Lett. 1995, 66(17), 2206-2208.
[5.18] Liu, P. T. ; Lu, H. Y. ; Chen, Y. C. ; Chi, S. Degradation of Laser-crystallized Laterally Grown Poly-Si TFT under Dynamic Stress. IEEE Electron Device Lett. 2007, 28(5), 401-403.
[5.19] Chen, B. W. ; Chang, T. C. ; Hung, Y. J. ; Huang, S. P. ; Liao, P. Y. ; Yang, C. Y. ; Chu, A. K. ; Wang, Terry, T. J. ; Chang, T. C. ; Su, B. Y. ; Kuo, S. C. ; Huang, I Y. Effects of Repetitive Mechanical Bending Strain on Various Dimensions of Foldable Low Temperature Polysilicon TFTs Fabricated on Polyimide. IEEE Electron Device Lett. 2016, 37(8), 1010-1013.
[5.20] Im, J. S. ; Kim, H. J. ; Thompson, M. O. Phase Transformation Mechanisms Involved in Excimer Laser Crystallization of Amorphous Silicon Films. Appl. Phys. Lett. 1993, 63(14), 1969-1971.
[5.21] Boyce, J. B. ; Mei, P. Laser Crystallization for Polycrystalline Silicon Device Applications. Technology and Applications of Amorphous Silicon 2000, 94-146. Springer Berlin Heidelberg.
[5.22] Fork, D. K. ; Anderson, G. B. ; Boyce, J. B. ; Johnson, R. I. ; Mei, P. Capillary Waves in Pulsed Excimer Laser Crystallized Amorphous Silicon. Appl. Phys. Lett. 1996, 68(15), 2138-2140.
[5.23] Fossum, J. G. ; Ortiz-Conde, A. ; Shichijo, H. ; Banerjee, S. K. Anomalous Leakage Current in LPCVD Polysilicon MOSFET's. IEEE Trans. Electron Devices 1985, 32(9), 1878-1884.
[5.24] Lin, C. S. ; Chen, Y. C. ; Chang, T. C. ; Chen, S. C. ; Jian, F. Y. ; Li, H. W. ; Chen, T. C. ; Weng, C. F. ; Lu, J. ; Hsu, W. C. Anomalous Capacitance Induced by GIDL in P-channel LTPS TFTs. IEEE Electron Device Lett. 2009, 30(11), 1179-1181.
[5.25] Chen, H. M. ; Chang, T. C. ; Tai, Y. H. ; Chiang, H. C. ; Liu, K. H. ; Chen, M. C. ; Huang, C. C. ; Lee, C. K. Gate Insulator Morphology-Dependent Reliability in Organic Thin-Film Transistors. IEEE Electron Device Lett. 2016, 37(2), 228-230.
[5.26] Richter, H. ; Wang, Z. P. ; Ley, L. The One Phonon Raman Spectrum in Microcrystalline Silicon. Solid State Commun. 1981, 39(5), 625-629.
[5.27] Sui, Z. ; Leong, P. P. ; Herman, I. P. ; Higashi, G. S.; Temkin, H. Raman Analysis of Light-emitting Porous Silicon. Appl. Phys. Lett. 1992, 60(17), 2086-2088
[6.1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
[6.2] C.-T. Tsai, T.-C. Chang, S.-C. Chen, I. Lo, S.-W. Tsao, M.-C. Hung, et al., "Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor," Applied Physics Letters, vol. 96, p. 242105, 2010.
[6.3] T.-C. Chen, T.-C. Chang, C.-T. Tsai, T.-Y. Hsieh, S.-C. Chen, C.-S. Lin, et al., "Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress," Applied Physics Letters, vol. 97, p. 112104, 2010.
[6.4] T.-C. Chang, F.-Y. Jian, S.-C. Chen, and Y.-T. Tsai, "Developments in nanocrystal memory," Materials today, vol. 14, pp. 608-615, 2011.
[6.5] M.-C. Chen, T.-C. Chang, C.-T. Tsai, S.-Y. Huang, S.-C. Chen, C.-W. Hu, et al., "Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films," Applied Physics Letters, vol. 96, p. 262110, 2010.
[6.6] Y.-E. Syu, T.-C. Chang, T.-M. Tsai, Y.-C. Hung, K.-C. Chang, M.-J. Tsai, et al., "Redox Reaction Switching Mechanism in RRAM Device With Structure," IEEE Electron Device Letters, vol. 32, pp. 545-547, 2011.
[6.7] H. Gleskova, I.-C. Cheng, S. Wagner, J. C. Sturm, and Z. Suo, "Mechanics of thin-film transistors and solar cells on flexible substrates," Solar Energy, vol. 80, pp. 687-693, Jun. 2006.
[6.8] S. Steudel, K. Myny, S. Schols, P. Vicca, S. Smout, A. Tripathi, et al., "Design and realization of a flexible QQVGA AMOLED display with organic TFTs," Organic Electronics, vol. 13, pp. 1729-1735, Sep. 2012.
[6.9] A. J. Flewitt, and W. I. Milne, “Low-temperature deposition of hydrogenated amorphous silicon in an electron cyclotron resonance reactor for flexible displays,” Proceedings of the IEEE, vol. 93, no. 7, pp. 1364-1373, Jul. 2005.
[6.10] C.-F. Huang, Y.-J. Yang, C.-Y. Peng, F. Yuan, and C. Liu, “Mechanical strain effect of n-channel polycrystalline silicon thin-film transistors,” App. Phys. Lett., vol. 89, no. 10, pp. 3502, Sep. 2006.
[6.11] P.-C. Kuo, A. Jamshidi-Roudbari, and M. Hatalis, “Effect of mechanical strain on mobility of polycrystalline silicon thin-film transistors fabricated on stainless steel foil,” App. Phys. Lett., vol. 91, no. 24, pp. 243507, Dec. 2007.
[6.12] I.-H. Peng, P.-T. Liu, and T.-B. Wu, “Effect of bias stress on mechanically strained low temperature polycrystalline silicon thin film transistor on stainless steel substrate,” App. Phys. Lett., vol. 95, no. 4, pp. 041909, Jul. 2009.
[6.13] C.-S. Lin, Y.-C. Chen, T.-C. Chang, F.-Y. Jian, W.-C. Hsu, Y.-J. Kuo, C.-H. Dai, T.-C. Chen, W.-H. Lo, and T.-Y. Hsieh, “NBTI degradation in LTPS TFTs under mechanical tensile strain,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 907-909, Jun. 2011.
[6.14] B.-W. Chen, T.-C. Chang, Y.-J. Hung, T.-Y. Hsieh, M.-Y. Tsai, P.-Y. Liao, B.-Y. Chen, Y.-H. Tu, Y.-Y. Lin, and W.-W. Tsai, “Impact of repeated uniaxial mechanical strain on p-type flexible polycrystalline thin film transistors,” App. Phys. Lett., vol. 106, no. 18, pp. 183503, May 2015.
[6.15] R. M. McMeeking, “On mechanical stresses at cracks in dielectrics with application to dielectric breakdown,” J. Appl. Phys., vol. 62, no. 8, pp. 3116-3122, Jun. 1987.
[6.16] M. Mativenga, M. Seok, and J. Jang, “Gate bias-stress induced hump-effect in transfer characteristics of amorphous-indium-galium-zinc-oxide thin-fim transistors with various channel widths,” App. Phys. Lett., vol. 99, no. 12, pp. 122107, Sep. 2011.
[6.17] A. Valletta, P. Gaucci, L. Mariucci, G. Fortunato, and F. Templier, ““Hump” characteristics and edge effects in polysilicon thin film transistors,” J. Appl. Phys., vol. 104, no. 12, pp. 124511, Dec. 2008.
[6.18] C.-F. Huang, C.-Y. Peng, Y.-J. Yang, H.-C. Sun, H.-C. Chang, P.-S. Kuo, H.-L. Chang, C.-Z. Liu, and C. W. Liu, “Stress-induced hump effects of p-channel polycrystalline silicon thin-film transistors,” IEEE Electron Device Lett., vol. 29, no. 12, pp. 1332-1335, Dec. 2008.
[6.19] N. Shigyo, S. Fukuda, T. Wada, K. Hieda, T. Hamamoto, H. Watanabe, et al., "Three-dimensional analysis of subthreshold swing and transconductance for fully-recessed-oxide (trench) isolated 1/4-μm-width MOSFETs," IEEE Trans. Electron Devices, vol. 35, pp. 945-951, Jul. 1988.
[6.20] P. Sallagoity, M. Ada-Hanifi, M. Paoli, and M. Haond, "Analysis of width edge effects in advanced isolation schemes for deep submicron CMOS technologies," IEEE Trans. Electron Devices, vol. 43, pp. 1900-1906, Nov. 1996.
[6.21] M. Mativenga, M. H. Choi, J. Jang, R. Mruthyunjaya, T. J. Tredwell, E. Mozdy, et al., "Degradation model of self-heating effects in silicon-on-glass TFTs," IEEE Trans. Electron Devices, vol. 58, pp. 2440-2447, Jun. 2011
[6.22] J.-S. Park, J. K. Jeong, H.-J. Chung, Y.-G. Mo, and H. D. Kim, "Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water," App. Phys. Lett., vol. 92, pp. 72104-72500, Feb. 2008.
[6.23] C.-S. Lin, Y.-C. Chen, T.-C. Chang, F.-Y. Jian, H.-W. Li, Y.-C. Chen, T.-C. Chen, and Y.-H. Tai, “Anomalous on-current and subthreshold swing improvement in low-temperature polycrystalline-silicon thin-film transistors under Gate bias stress,” App. Phys. Lett., vol. 98, no. 12, pp. 122101, Mar. 2011.
[7.1] A. Nathan, G. R. Chaji, S. J. Ashtiani, J. Disp. Technol., 1(2), 267-277 (2005).
[7.2] T. Nishibe, H. Nakamura, Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp., 37(1), pp. 1091-1094. (2006).
[7.3] K. M. Lim, K. Lee, J. S. Yoo, J. M. Yoon, M. K. Baek, J. S. Yoo, Y.S. Jung, J. Park, S. W. Lee, H. Kang, I.J. Chung and C. D. Kim, 49(7), 1107-1111. (2005).
[7.4] B. W. Chen, T. C. Chang, Y. J. Hung, S. P. Huang, H. M. Chen, P. Y. Liao, Y. H. Lin, H. C. Huang, H. C. Chiang, C. I Yang, Y. Z. Zheng, A. K. Chu, H. W. Li, C. H. Tsai, H. H. Lu, T. T. J. Wang and T. C. Chang, ACS Appl. Mater. Interfaces. (2017).
[7.5] C. S. Lin, Y. C. Chen, T. C. Chang, F. Y. Jian, W. C. Hsu, Y. J. Kuo, C. H. Dai, T. C. Chen, W. H. Lo and T. Y. Hsieh, IEEE Electron Device Lett. 32(7), 907-909 (2011).
[7.6] I. H. Peng, P. T. Liu and T. B. Wu, Appl. Phys. Lett., 95(4), 041909.( 2009).
[7.7] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, Jpn. J. Appl. Phys., 45(5S), 4303. (2006).
[7.8] B. W. Chen, T. C. Chang, Y. J. Hung, S. P. Huang, P. Y. Liao, C. Y. Yang, A. K. Chu, Terry, T. J. Wang, T. C. Chang, B. Y. Su, S. C. Kuo and I Y. Huang IEEE Electron Device Lett., 37(8), 1010-1013 (2016).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code