Responsive image
博碩士論文 etd-0616104-124904 詳細資訊
Title page for etd-0616104-124904
論文名稱
Title
高雄市大氣中C2-C15揮發性有機物特徵之時空分佈及其受體模式之分析
Spatial and temporal characteristics of C2-C15 hydrocarbons and receptor modeling in the air of urban Kaohsiung, Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
197
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-05-24
繳交日期
Date of Submission
2004-06-16
關鍵字
Keywords
移動源指紋、化學質量平衡法、受體模式、大氣揮發性有機物、因子分析、臭氧生成潛勢
Factor analysis, Vehicles profiles, Chemical mass balance, Volatile organic compounds, Receptor model, Ozone formation potential
統計
Statistics
本論文已被瀏覽 5701 次,被下載 0
The thesis/dissertation has been browsed 5701 times, has been downloaded 0 times.
中文摘要
本研究於高雄市2003年春季選定14天在楠梓及小港站同步測量上午(07-10)、下午(13-16)及傍晚(18-21)時段之大氣71種碳氫化合物(HC, C2-C15)。結果顯示高雄大氣中以甲苯濃度最高(43.36-54.49 μg m-3),其次是異戊烷(i-pentane)、1,2,4-三甲基苯(1,2,4-trimethylbenzene)、苯(benzene)、正丁烷(n-butane)、丙烷(propane)及乙炔(acetylene)的濃度是10.36–17.11 μg m-3,而其中14種鹵素類碳氫化合物(halocarbons)濃度為0.25–4.57 μg m-3。 若以有機物成分(重量百分比)來區分,則高雄市大氣中以烷類 (alkanes) 比例最高(約佔44.8%) ,其次是芳香族(aromatics)(約佔35.1%) 、烯類(alkenes)(約15.5%) 及鹵化物(約5.4%)。一般而言下午時段大氣中HC的濃度低於上午及傍晚,其原因主要是中午到下午時段具有較強烈之光化反應及較佳之擴散條件。此外,HC之日濃度隨溫度而上升,而在星期日之低濃度HC是與較少之車流量有關。在光化反應性之研究結果顯示,HC濃度會隨NO2/NOx比值增加而減少,而由相關性分析顯示,移動源為高市大氣HC之主要污染源之一。

本研究亦建立高雄市移動源之指紋,乃是選擇上午及下午交通尖峰時段於高市三個隧道進行25種HC之量測。結果顯示,HC濃度會隨車流率而上升,而三隧道之HC排放指紋大部分都為C2-C6。此外,交通狀況、移動源型式及種類都會影響隧道內之排放,其他的影響因素還有車齡、附近污染源及大氣HC之時空分佈。各隧道之臭氧生成潛勢(OFP)是以有機物種之最大增量反應性推估,藉此可知OFP會因車流率而增加。移動源分佈會影響隧道內之有機物族群之OFP,其中分佈之比例由高而低依序為烯類、芳香族及烷類。

本研究繼以因子分析法探討造成大氣HC可能之污染族群,結果顯示在楠梓及小港站之主要來源為移動源排放、石油/柴油排放、工業製程(如:塑膠/橡膠製程)、燃燒、溶劑揮發或商業/消費排放等,並以此結果作為受體模式指紋資料優先篩選之依據。受體模式分析結果顯示,楠梓站HC污染源在上午(07-10)及夜間(18-21)以移動源排放比例最高,分別為46.33%及56.36%,其次為工業製程分別為29.63%及22.37%。而下午時段(13-16)以工業製程排放佔最高為40.39%,其次為溶劑逸散30.61%。小港站HC污染源在上午及夜間以移動源排放比例最高為46.19%及49.29%,其次為工業製程之23.19%及26.11%;下午時段以溶劑揮發佔的比例38.85%最高,其次工業製程(28.95%)與移動源(25.19%)之排放比例相當。兩站下午時段移動源對大氣中HC的貢獻比例降低,主要是因此時段之車流量減少所致。
Abstract
The concentrations of seventy-one hydrocarbons (HC) from C2 to C15 were measured simultaneously at two sites in Kaohsiung city in the morning (07-10), the afternoon (13-16), and the evening (18-21) on 14 days in spring 2003. Results show that the most abundant species of Kaohsiung’s air is toluene (43.36-54.49 μg m-3), followed by i-pentane, 1,2,4-trimethylbenzene, benzene, n-butane, propane and acetylene, in the range 10.36–17.11 μg m-3. The concentrations of 14 halocarbons are in the range 0.25–4.57 μg m-3. Alkanes (around 44.8%) represent the largest proportion of the total HC, followed by aromatics (35.1%), alkenes (15.5%) and halocarbons (5.4%). The afternoon HC concentrations are much lower than those in the morning and at night, due to relatively intense photochemical reaction and favorable dispersion conditions from noon to afternoon. Notable increases in daily HC concentrations are consistent with high temperature, and low HC concentrations on Sunday coincide with low traffic volume. Photochemical activity is investigated, and HC concentrations are found to decline as the NO2/NOx ratio increases. Correlation analyses imply that vehicle exhaust is the dominant source of atmospheric hydrocarbons in Kaohsiung.

The profiles of traffic exhausts were also measured for 25 HC species during the morning and afternoon rush hours on four different days in all three traffic tunnels in Kaohsiung City. Results show that VOC concentrations increase with traffic flow rate, and emission profiles in the three tunnels are mostly in the range C2 – C6. Besides the traffic conditions and vehicle type, the pattern of emissions in each tunnel was also influenced by other factors, such as vehicle age, nearby pollution sources, and the spatial or temporal variation of HC in the urban atmosphere. The ozone formation potential (OFP) in each tunnel was assessed based on the maximum incremental reactivities of the organic species, demonstrating that OFP increases with traffic flow rate. Vehicle distribution influences the contributions of organic group to OFP in a tunnel. Meanwhile, when ranked in descending order of contribution to OFP in all tunnels, the organic groups followed the sequence alkenes, aromatics, and alkanes.

The possible source categories affecting the atmospheric HC species were further analyzed using factor analysis. Results showed that the major sources of ambient HC at the Nan-Chie and Hsiung-Kong sites are: vehicle exhaust, petrol/diesel exhaust, industrial processes (for example, plastic/rubber process), combustion exhaust, solvent fugitive or business/consume exhaust. Based on the results of factor analysis, source profiles (or fingerprints) were selected and receptor modeling was conducted based on chemical mass balance (CMB). Results of receptor modeling indicated that, at Nan-Chie site, vehicle exhaust (46.33% and 56.36%) represent the largest proportion of total HC, followed by industrial processes (29.63% and 22.37%) in the morning (07-10) and the evening (18-21), respectively; but were industrial process (40.39%) and solvent fugitive exhaust (30.61%) in the afternoon (13-16). Similarly at Hsiung-Kong site, vehicle exhaust (around 46.19% and 49.29%) represent the largest proportion of total HC, followed by industrial processes (23.19% and 26.11%) in the morning and evening, respectively; but were solvent fugitive exhaust (38.85%), vehicle exhaust (28.95%) and industrial process (25.19%) in the afternoon. It is evident that relatively low traffic volumes in the afternoon at both sites reduce the contribution of traffic exhaust to ambient HC.
目次 Table of Contents
目 錄

第一章 前言……………..……………………………………………1-1
1-1 研究動機…………………………………………………….1-1
1-2 研究內容…………………………………………………....1-1
第二章 文獻回顧……………..…………………………………….2-1
2-1 高雄市近年空氣及氣象背景資料概述………..…………..2-1
2-1-1 空氣品質變化趨勢…………..……………………...…2-1
2-1-2 各空氣污染物濃度變化趨勢………..……………...…2-2
2-1-3 空氣污染物排放量概估……………………………….2-7
2-1-4 高雄地區歷年氣象概述…………………………….….2-9
2-2 大氣中揮發性有機物(VOC)來源………………………..2-12
2-2-1 大氣揮發性有機物性質及排放特徵………………...2-12
2-2-2 固定源揮發性有機物排放特性……………………...2-15
2-2-3 移動源揮發性有機物排放特性…..………………….2-15
2-2-4 自然源揮發性有機物排放特性……………………...2-19
2-3 大氣中揮發性有機物之影響…………………………..…2-21
2-3-1 揮發性有機物與光化學煙霧之關聯………………...2-21
2-3-2 揮發性有機物之危害性……………………………...2-23
2-3-3 揮發性有機物光化反應性度量……………………...2-28
2-4 揮發性有機物監測分析……………………………….….2-31
2-4-1 測站位置之選定..…………………………………….2-31
2-4-2 揮發性有機物監測物種……………………………...2-32
2-5受體模式於大氣揮發性有物污染源之相關研究…………2-33
2-5-1 主成分/因子分析…………………………………….2-33
2-5-2 化學質量平衡模式(CMB)………………..…………2-34
第三章 研究方法與步驟…………..……………………..………….3-1
3-1 研究架構與流程…………………………………………….3-1
3-2 現場採樣………………………….…………………………3-2
3-2-1 大氣揮發性有機物採樣規劃…………..……………...3-2
3-2-2 移動源揮發性有機物採樣規劃……………………….3-5
3-3 採樣分析方法依據…………………….............................3-6
3-3-1大氣HC採樣分析法……….…………..………………3-6
3-3-2 移動源HC採樣分析法………………..………………3-6
3-3-3 採樣設備與程序……………..………………………...3-7
3-3-4 分析儀器與條件……………………………………….3-9
3-4 品保及品管結果……………..........................................3-12
3-4-1 品保及品管作業……………………………………...3-12
3-4-2 檢量線之品保及品管結果…………………………...3-14
3-5 因子分析與受體模式之理論基礎………………………..3-19
3-5-1 因子分析……………………………………………...3-19
3-5-2 受體模式…………………………………………..….3-21
第四章 結果與討論…………………………………………………4-1
4-1高雄市大氣揮發性有機物濃度變化特性解析……………..4-1
4-1-1 大氣揮發性有機物種特徵結構之變化……………….4-1
4-1-2 大氣揮發性有機物濃度之變化.……………………..4-12
4-1-3 季節性大氣總揮發性有機物濃度之變化…………...4-16
4-1-4 大氣揮發性有機物與移動源/非移動源之相關性分析……………………………………………………..4-21
4-1-5 大氣揮發性有機物與氮氧化物之光化學反應….…..4-24
4-1-6 國際城市之大氣揮發性有機物濃度特徵比較……...4-26
4-2交通隧道移動源揮發性有機物指紋量測結果……………4-29
4-2-1交通隧道移動源揮發性有機物指紋成分.…………...4-29
4-2-2地下道及隧道移動源BTEX比值特性分析…………..4-35
4-3臭氧生成潛勢分析 (Ozone Formation Potential, OFP)
……….…………………………………………………….4-37
4-3-1最大增量反應性(Maximum Incremental Reactivities, MIR)…………………………………………………..4-37
4-3-2臭氧生成潛勢量(OFP)評估法………………………..4-41
4-4因子分析於高雄市區污染源指紋篩選之應用……………4-44
4-5受體模式(CMB)模擬結果探討……………………………4-53
4-5-1 CMB模式指紋資料之建立…………………………..4-53
4-5-2指紋資料敏感性分析…………………………………4-62
4-5-3 大氣揮發性有機物污染源排放量推估……………...4-65
4-5-4 大氣揮發性有機物污染源排放貢獻百分比………...4-74
第五章 結論與建議…………………………..……………….…….5-1
5-1 結論…………………………………….…………..……….5-1
5-2 建議………………………………………….………..…….5-3
參考文獻…………………………………………………....………參-1
附錄A 大氣揮發性有機物濃度分析層析圖………………...…..附A-1
附錄B 大氣揮發性有機物濃度採樣原始數據…………………..附B-1





















表 目 錄

表2-1-1民國89年高雄市各污染源排放總表………………………2-8
表2-1-2 高雄地區近十年各月份平均氣象資料統計表…..………..2-11
表2-2-1.1 揮發性有機物(VOC)排放源.…………………...………..2-13
表2-2-1.2 高屏空品區固定與移動污染源排放量…...……………..2-14
表2-2-3.1 車用汽柴油成分及性能管制標準汽油成分標準及性能標準
…………………...………………………………………2-18
表2-2-3.2柴油成分標準……………………………………………..2-18
表2-2-3.3汽油成分標準(中華民國96年1月1日起施行)………...2-19
表2-2-3.4柴油成分標準(中華民國96年1月1日起施行)………...2-19
表2-3-1 有害空物污染物(Hazardous air pollutants, HAPs) (1/4)…..2-24
表2-3-1 有害空物污染物(Hazardous air pollutants, HAPs) (2/4)…..2-25
表2-3-1 有害空物污染物(Hazardous air pollutants, HAPs) (3/4)…..2-26
表2-3-1 有害空物污染物(Hazardous air pollutants, HAPs) (4/4)…..2-27
表2-3-2 依據VOC參與光化學反應活性分類(HMSO,1991)…...2-30
表2-4-2.1 美國環保署PAMS監測物種…………………………...2-32
表3.2.1-1 大氣HC分析物種 (71種)….……………………………3-3
表3-2-1.2 高雄市區空氣品質監測網測站環境資料一覽表……….3-4
表3-2-2.1 移動源分析物種 (25種)………………………………...3-5
表3-3-3.1 吸附管之組成及特性…………………………………….3-8
表3-3-4.1 氣相層析質譜儀(GC-MS)及TD-4操作條件…………...3-9
表3-3-4.2 氣相層析儀(GC/FID)之操作條件……………………..3-10
表3-4-2.1 標準品檢量線 (移動源)………………………………..3-15
表3-4-2.2 標準品檢量線 (大氣HC) (1/3)……………………….3-16
表3-4-2.2 標準品檢量線 (大氣HC) (2/3)……………………….3-17
表3-4-2.2 標準品檢量線 (大氣HC) (3/3)……………………….3-18
表3-5-2.1 CMB8模式統計指標判定準則…………………………3-25
表4-1-1.1 楠梓站及小港站於2003年3月及4月之氣象資料…..4-2
表4-1-1.2 2003年春季楠梓站及小港站之71種HC平均濃度及標準偏差(SD)(1/2)…………………………………………...4-6
表4-1-1.2 2003年春季楠梓站及小港站之71種HC平均濃度及標準偏差(SD)(2/2)…………………………………………...4-7
表4-1-1.3 楠梓站及小港站HC之F-test及T-test…………………4-8
表4-1-3.1 民國92年楠梓站及小港站四季之臭氧事件日……….4-16
表4-1-5.1 HC與OH 自由基之反應速率(k)……………………4-26
表4-1-6.1高雄市區楠梓及小港與國外城市之HC濃度特徵比較(1/2)…………………………………………………….4-27
表4-1-6.1 高雄市區楠梓及小港與國外城市之HC濃度特徵比較(2/2)…………………………………………………….4-28
表4-2-1.1 三隧道之25種HC平均濃度(mean ±SD1)…..………..…4-31
表4-2-1.2 三隧道之25種HC化學組成百分比…………..………...4-32
表4-2-1.3 交通隧道之排放組成 (SPECIATE 3.1)………………..4-33
表4-2-1.4 三隧道鄰近出口之CO/NOx 及 NMHC/NOx 比值..4-34
表4-2-2.1 地下道及隧道BTEX之比值…………………………….4-36
表4-3-1.1 最大增量反應性(MIR)反應尺度資料表(1/2)…………4-39
表4-3-1.1 最大增量反應性(MIR)反應尺度資料表(2/2)…………4-39
表4-3-2.1 地下道及隧道之臭氧生成潛勢量 (OFP)……………..4-43
表4-4-1 高雄市2001年NMHC 之排放量 (噸/年) (DEP, 2002)
…………………………………………………………4-44
表4-4-2 高雄市列管石化廠之VOC排放量 (慧群,2001)……4-45
表4-4-3 楠梓站之HC平均濃度因子分析結果(1/2)……………..4-50
表4-4-3 楠梓站之HC平均濃度因子分析結果(2/2)……………..4-51
表4-4-4 小港站之HC平均濃度因子分析結果(1/2)……………..4-52
表4-4-4 小港站之HC平均濃度因子分析結果(2/2)……………..4-53
表4-5-1.1 CMB8模式選用之指紋資料………...…………………4-54
表4-5-1.2 本土移動源指紋資料…………………………………...4-55
表4-5-1.3 本土之表面塗裝(Coat1)、煉油製程(Ind1)、塑膠製程(Ind2)及橡膠製程(Ind3)指紋資料……………………………..4-56
表4-5-2.1楠梓站移動源之敏感性分析 (2003/3/17, 7:00 -10:00)
…………………………………………………………..4-63
表4-5-2.2 楠梓站溶劑逸散、工業製程及污水廠之敏感性(2003 / 3 / 17,7:00-10:00)…………………………………………4-64
表4-5-3.1 楠梓站之移動源、燃燒源、溶劑逸散、工業製程及污水廠佔大氣HC之濃度分佈 (2003年)……………………4-67
表4-5-3.2 小港站之移動源、燃燒源、溶劑逸散、工業製程及污水廠佔大氣HC之濃度分佈 (2003年)…………………….4-70
表4-5-3.3 楠梓站及小港站之移動源、燃燒源、溶劑逸散、工業製程及污水廠佔大氣HC日平均之濃度分佈 (2003年)….4-73
表4-5-4.4 採樣點附近道路之車流量……………………………….4-78

圖 目 錄

圖2-1-1 高屏地區空氣品質現況(84-92年)………………………...2-1
圖2-1-2 高雄市一般測站85年至92年PSI>100指標污染物逐月變化圖…………………………………………………………2-2
圖2-1-3 高屏地區84-92年逐月PM10濃度變化…………………..2-2
圖2-1-4 高屏地區84-92年逐月SO2濃度變化……………………2-3
圖2-1-5 高屏地區84-92年逐月NO2濃度變化……………………2-3
圖2-1-6 高屏地區84-92年逐月O3濃度變化……………………..2-4
圖2-1-7 高屏地區84-90年逐月CO濃度變化…………………….2-4
圖2-1-8 高雄市各測站PM10逐月濃度變化趨勢 (1/2)……………2-5
圖2-1-8 高雄市各測站PM10逐月濃度變化趨勢 (2/2)……………2-9
圖2-2-1.1 民國89年高屏空品區固定與移動源NMHC排放百分比
……………………………………………………………2-16
圖2-3-1 光化反應流程圖…………………………………………..2-22
圖2-4-1 美國環保署之光化評估監測站之示意圖………………..2-31
圖3-1-1 研究架構與流程…………………………………………….3-1
圖3-2-1 高雄市區VOC監測站及周界環境示意圖………………..3-4
圖3-3-1.1採樣設備示意圖(a)多層吸附管(b)濃度穿透實驗……...3-6
圖3-3-2.1不?袗?吸附管淨化裝置…………………………………...3-8
圖3-3-4.1氣相層析質譜儀升溫程式示意圖……………………….3-10
圖4-1-1.1 (a)楠梓站及(b)小港站於2003年3月17-23日及4月21-27日之上午(07-10)、下午 (13-16) 及傍晚(18-21)風花圖………………………………………………………4-3
圖4-1-1.2 2003年春季楠梓站採樣期間之15 種物種之濃度日變化圖
……………………………………………………………4-9
圖4-1-1.3 2003年春季小港站採樣期間之15 種物種之濃度日變化圖
…………………………………………………………....4-10
圖4-1-1.4 楠梓站及小港站之THC (for all 71 species)日濃度變化圖
………………………………………………….……….4-11
圖4-1-2.1 2003年3月17-23日及4月21-27日C2-C15 HC (鹵素HC除外)及鹵素HC(Halo) 於上午(07-10)、下午(13-16)及傍晚(18-21)之平均濃度變化圖(a) 楠梓站(b) 小港站
……………………………………………………………4-13
圖4-1-2.2 2003年3月17-23日及4月21-27日楠梓站及小港站之THC(for all 71 species)於上午(07-10)、下午(13-16)及傍晚(18-21)濃度變化圖………………………………….4-14
圖4-1-2.3 2003年3月17-23日及4月21-27日之THC平均濃度 (for all 71 species) 與上午(07-10)、下午(13-16)及傍晚(18-21)風向之關係圖(a) 楠梓站(b)小港站……………………4-15
圖4-1-3.1 楠梓站春季NOx/NMHC之比值 (92年)…………….4-17
圖4-1-3.2 楠梓站夏季NOx/NMHC之比值 (92年)……………..4-17
圖4-1-3.3 楠梓站秋季NOx/NMHC之比值 (92年)…………….4-18
圖4-1-3.4 楠梓站冬季NOx/NMHC之比值 (92年)……………..4-18
圖4-1-3.5 小港站春季NOx/NMHC之比值 (92年)……………..4-19
圖4-1-3.6 小港站夏季NOx/NMHC之比值 (92年)……………..4-19
圖4-1-3.7 小港站秋季NOx/NMHC之比值 (92年)……………..4-20
圖4-1-3.8 小港站冬季NOx/NMHC之比值 (92年)……………..4-20
圖4-1-4.1 2003年春季之ethylene, i-pentane, benzene and toluene 與acetylene濃度之關係圖(a)楠梓站(b)小港站 (實線為迴歸分析線)…………………………………………….…….4-23
圖4-1-5.1 2003年春季下午時段(13-16)之平均HC濃度與NO2/NOx比值之關係圖(a)楠梓站(b)小港站…………………...…...4-25
圖4-4-1 監測站附近之工業區及工廠位置示意圖…………………4-46
圖4-5-1.1 中正地下道及過港隧道之指紋資料…………………….4-60
圖4-5-1.1 工業製程之指紋資料…………………………………….4-61
圖4-5-4.1 2003年3月17-23日及4月21-27日之各污染源HC平均貢獻百分比(A)楠梓站 (B)小港站 (1: 移動源 2: 鍋爐燃燒 3: 溶劑逸散 4: 工業製程5:污水廠)……………………4-75
圖4-5-4.2 2003年3月17-23日及4月21-27日之移動污染源HC平均貢獻百分比(A)楠梓站(B)小港站(1: 汽油車, 2: 柴油車, 3: 機車)……………………………………………………...4-77

附表目錄

附表B-1 楠梓站大氣揮發性有機物濃度採樣原始數據(07:00-10:00)……………………………………………………..附B-1
附表B-2 楠梓站大氣揮發性有機物濃度採樣原始數據(13:00-16:00)……………………………………………………..附B-2
附表B-3 楠梓站大氣揮發性有機物濃度採樣原始數據(18:00-21:00)……………………………………………………..附B-3
附表B-4 小港站大氣揮發性有機物濃度採樣原始數據(07:00-10:00)……………………………………………………..附B-4
附表B-5 小港站大氣揮發性有機物濃度採樣原始數據(13:00-16:00)……………………………………………………..附B-5
附表B-6 小港站大氣揮發性有機物濃度採樣原始數據(18:00-21:00)……………………………………………………..附B-6

附圖目錄

附圖A-1 楠梓站2003年3月17日層析圖(a)07-10 (b)13-16 (C)18– 21…………………………………………..………....附A-1
附圖A-2 楠梓站2003年3月18日層析圖 (a)07-10(b)13-16(C)18- 21……………………………………………………..附A-2
附圖A-3 楠梓站2003年3月19日層析圖(a)07-10(b)13-16(C)18- 21……………………………………………………..附A-3
附圖A-4 楠梓站2003年3月20日層析圖(a)07-10(b)13-16(C)18-
21…………………………………………………......附A-4
附圖A-5 楠梓站2003年3月21日層析圖(a)07-10(b)13-16(C)18- 21…………………………………………………......附A-5
附圖A-6 楠梓站2003年3月22日層析圖(a)07-10(b)13-16(C)18- 21…………………………………………………......附A-6
附圖A-7 楠梓站2003年3月23日層析圖(a)07-10(b)13-16(C)18- 21…………………………………………………......附A-7
附圖A-8 楠梓站2003年4月21日層析圖(a)07-10(b)13-16(C)18-
21……………………..……………………………......附A-8
附圖A-9 楠梓站2003年4月22日層析圖(a)07-10(b)13-16(C)18- 21……………………………..……………………......附A-9
附圖A-10 楠梓站2003年4月23日層析圖(a)07-10(b)13-16(C)18- 21……………………………………………...…….附A-10
附圖A-11 楠梓站2003年4月24日層析圖(a)07-10(b)13-16(C)18- 21…………………………………………………....附A-11
附圖A-12 楠梓站2003年4月25日層析圖(a)07-10(b)13-16(C)18- 21………………………………………………....附A-12
附圖A-13 楠梓站2003年4月26日層析圖(a)07-10(b)13-16(C)18- 21…………………………………………………....附A-13
附圖A-14 楠梓站2003年4月27日層析圖(a)07-10(b)13-16(C)18- 21…………………………………………………....附A-14
附圖A-15 小港站2003年3月17日層析圖(a)07-10(b)13-16(C)18- 21……………………………………...…………….附A-15
附圖A-16 小港站2003年3月18日層析圖(a)07-10(b)13-16(C)18- 21…………………………………………………....附A-16
附圖A-17 小港站2003年3月19日層析圖(a)07-10(b)13-16(C)18- 21……………………………………...…………….附A-17
附圖A-18 小港站2003年3月20日層析圖(a)07-10(b)13-16(C)18- 21…………………………………………………....附A-18
附圖A-19 小港站2003年3月21日層析圖(a)07-10(b)13-16(C)18- 21………………………………...………………….附A-19
附圖A-20 小港站2003年3月22日層析圖(a)07-10(b)13-16(C)18- 21…………………………………………………....附A-20
附圖A-21 小港站2003年3月23日層析圖(a)07-10(b)13-16(C)18- 21…………………………….……………………...附A-21
附圖A-22 小港站2003年4月21日層析圖(a)07-10(b)13-16(C)18- 21…………………………………………………....附A-22
附圖A-23 小港站2003年4月22日層析圖(a)07-10(b)13-16(C)18- 21………………………………...………………….附A-23
附圖A-24 小港站2003年4月23日層析圖(a)07-10(b)13-16(C)18- 21………………………………...………………….附A-24
附圖A-25 小港站2003年4月24日層析圖(a)07-10(b)13-16(C)18- 21……………………………...…………………….附A-25
附圖A-26小港站2003年4月25日層析圖(a)07-10(b)13-16(C)18- 21…………………………………………………....附A-26
附圖A-27 小港站2003年4月26日層析圖(a)07-10(b)13-16(C)18- 21………………………………...………………….附A-27
附圖A-28 小港站2003年4月27日層析圖(a)07-10(b)13-16(C)18- 21………………………………...………………….附A-28
參考文獻 References
Abu-Allaban, M., Gerlter, A.W., Lowenthal, D.L., 2002. A preliminary apportionment of the sources of ambient PM10, PM2.5 and VOCs in Cairo. Atmospheric Environment 36, 5549-5557.
Anilovich, I., Hakkert, A.S., 1996. Survey of vehicle emissions in israel related to vehicle age and periodic inspection. The Science of Total Environment 189/190, 197-203.
Atkinson, R., 1990. Gas-phase tropospheric chemistry of organic compounds: a review. Atmospheric Environment 24A, 1-41.
Borbon, A., Locoge, N., Veillerot, M., Galloo, J.C., Guillermo, R., 2002. Characteristics of NMHCs in a French urban atmosphere: overview of the main sources. The Science of the
Total Environment 292, 177-191.
Brocco, D., Fratarcangeli, R., Lepore, L., Petricca, M., Ventrone, I., 1997. Determination of aromatic hydrocarbons in urban air of Rome. Atmospheric Environment 31, 557-566.
Calabrese, E.J. and Kenyon, E.M., 1991. Air toxics and risk assessment. Lewis Publishers, Chelsea, Michigan, U.S.A.
Carter, W.P.L., 1994. Development of Ozone Reactivity Scales for Volatile Organic Compounds; Journal of & Waste Management Association 44, 881-899.
Cetin, E., Odabsi, M. Seyfioglu, R., 2003. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. The Science of the Total Environment 312, 103-112.
Chameides, W.L., Fehsenfeld, F., Rodgers, M.O., Cardelino, C., Martinez, J., Parrish, D., Lonneman, W., Lawson, D.R., Rasmussen, R.A., Zimmerman, P., Greenberg, J., Middleton, P., Wang, T., 1992. Ozone precursor relationships in the ambient atmosphere. Journal of geophysical research 97, 6037-6055.
Chameides, W.L., Lindsay, R.W., Richardson, J. and Kiang, C.S., 1998. The role of biogenetic hydrocarbons in urban photochemical smog Atlanta as a case study. Science 241, 1473-1475.
Chen, K.S., Lin, C.F., Chou, Y.M., 2001. Determination of source contributions to ambient PM2.5 in Kaohsiung, Taiwan, Using a receptor model. Journal of Air and Waste Management Association 51, 489-498.
Chen, K.S., Lai, C.H., Ho, Y.T., 2003a. Source profiles and ozone formation potentials of volatile organic compounds in three traffic tunnels in Kaohsiung, Taiwan. Journal of Air and Waste Management Association 53, 102-112.
Chen, K.S., Ho, Y.T., Lai, C.H., Chou, Y.M., 2003b. Photochemical modeling and analysis of meteorological parameters during ozone episodes in Kaohsiung, Taiwan. Atmospheric Environment 37, 1811-1823.
Chen, K.S., Ho, Y.T., Lai, C.H., Tsai, Y.A., Chen, S.J., 2004. Trends in concentration of ground-level ozone and meteorological conditions during high ozone episodes in Kao-Ping airshed, Taiwan. Journal of Air and Waste Management Association 54, 36-48.
Chung, Y.C., Investigations of three dimension air flow and pollutants dispersion in traffic tunnel. Ph. D. Dissertation, Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, July 2002.
DEP, 2002. Air Quality Management in Kaohsiung City. Second Mid-Term Report Prepared by Sinotech Engineering Consultant to the Department of Environmental Protection, Kaohsiung Municipal Government, Kaohsiung, Taiwan, ROC.
Derwent, R.G., Middleton, D.R., Field, R.A., Goldstone, M.E., Lester, J.N., Perry, R., 1995. Analysis and interpretation of air quality data from an urban roadside location in central London over the period from July 1991 to July 1992. Atmospheric Environment 29, 923-946.
Derwent, R.G., Davies, T.J., Delaney, M., Dollard, G.J., Field, R.A., Dumitrean, P., Nason, P.D., Jones, B.M.R., Pepler, S.A., 2000. Analysis and interpretation of the continuous hourly monitoring data for 26 C2-C8 hydrocarbons at 12 United Kingdom sites during 1996. Atmospheric Environment 34, 297-312.
Devore, J.L., 1991. Probability and Statistics for Engineers and the Sciences. 3rd ed., Brooks/Cole Publishing Company, Pacific Grove, California, pp. 283-320.
Doll, R., Peto, R., 1981. The case of cancer: quantitative estimates of avoidable risks of cancer in the united states today. Journal National Cancer Insti.
Drewitt, G.B., Curren, K., Steyn, D.G., Gillespie, T.J., Niki, H., 1998. Measurement of biogenic hydrocarbon emission from vegetation in the lower fraser valley, British Columbia. Atmospheric Environment32, 3457-3466.
Fujita, E.M., Watson, J.G., Chow, J.C., Lu, Z., 1994. Validation of the chemical mass balance receptor model applied to hydrocarbon source apportionment in the southern California air quality. Environmental Science and Technology 28, 1633-1649.
Fujita, E.M. and Lu, Z., 1998. Analysis of data from the 1995 NARSTO-Northeast study. Volume III: Chemical mass balance receptor modeling. Draft final report. Prepared for Coordinating Research Council. Atlanta, GA, Desert Research Institute, Reno, NV.
Fujita, E.M., Lu, Z., Sheetz, L., Harshfield, G., Hayes, T., Zielinska, B., 1997. Hydrocarbon source apportionment in weatern Washington. Prepared for State of Washington Dept. of Ecology. Lacy, WA, Desert Research Institute, Reno, NV.
Greenberg, J. P., Guenther, A., Zimmerman, P., Baugh, W., Geron, C., Davis, K., Helmig, D., Klinger, L.F., 1999. Tethered balloon measurements of biogenic VOCs in the atmospheric boundary layer. Atmospheric Environment 33, 855-867.
Hansen, A.B., Palmgren, F., 1996. VOC air pollutants in Copenhagen. The Science of the Total Environment 189/190, 451-457.
Ho, K.F., Lee, S.C., Chiu, G.M.Y., 2002. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station. Atmospheric Environment 36, 57-65.
Hodgson, A.T., Faulker, D., Sullivan, D.P., DiBartolomeo, D.L., Russell, M.L., Fisk, W.J., 2003. Effect of outside air ventilation rate on volatile organic compound concentrations in a call center. Atmospheric Environment 37, 5517-5527.
HMSO, Protocols to the 1991 Convention on Long-range Transboundary Air Pollution Concerning the Control of Volutile Compounds or their Transboundary flux.
Hsieh, C.C., Chang, K.H., Kao, Y.S., 1999. Estimating the Ozone Formation Potential of Volatile Aromatic Compounds in Vehicle Tunnels. Chemosphere 39, 1433-1444.
Hsu, J.H. The Relationship between Volatile Organic Profiles and Emission Sources in Ozone Episode Regions. Ph.D. dissertation, Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan, June 2000.
Hung, I.F., Chung, H., Hung, C.K., Huang, K.C., Tsai, C.J., 1996. Organic aerosols in a semiconductor manufacturing facility. Journal of Aerosol Science 27, 657.
Hwa, M.Y., Hsieh, C.C., Wu, T.C., Chang, L.F., 2002. Real-World Vehicle Emissions and VOCs Profile in the Taipei Tunnel Located at Taiwan Taipei Area. Atmospheric Environment 36, 1993-2002.
Ingalls, M.N., On-Road Vehicle Emission Factors from Measurements in a Los Angeles Area Tunnel. Paper 89-137.3, Air and Waste management Association 82nd National Meeting, Anaheim, California, June 25-30, 1989.
Kao, A.S., 1994. Formation and removal reactions of hazardous air pollution. Journal of Air and Waste Management Association 44, 683-696.
Kenski, D. M., Wadden, R.A., Scheff, P.A., Lonneman, W.A., 1995. Receptor modeling approach to voc emission inventory validation. Journal of Environmental Engineering, 483-491.
Kohno, H., Tamura, M., Honda, S., Shibuya, A., Yamamoto, T., Berezin, A.A., Chang, J.S., 1997. Generation of aerosol particales in the process of xylene and TCE decomposition from air stream by a ferroelectric packed-bed barrier discharge reactor. Journal of Aerosol Science 28, 413-414.
Lai, C.H., Chen, K.S., Ho, Y.T., Chou, M.S., 2004. Characteristics of C2-C5 hydrocarbons in the air of urban Kaohsiung, Taiwan. Atmospheric Environment 38, 1997-2011.
Lahre, T., 1998. Cancer risks from air toxic in urban areas. 81st annual meeting of APCA, Dallas, Texas, 19-24.
Levaggi, D.A., Sis, W., 1991. Gaseous toxics monitoring in the San Francisco Bay Area: a review and assessment of four years of data. 84th annual meeting of A&WWMA, Vancouver, B. C., Columbia.
Lodge Jr., J. P., 1989. Methods of Air Sampling and Analysis. 3rd ed., Lewis Publishers, Inc., Chelsea, Michigan.
Manfred, T.,K., Richard F., 1995. ATEMIS- A tool for calculating air traffic exhaust emission and its application. The Science of Total Environment 169, 241-247.
Miller, S.L., Anderson, M.J., Daly, E.P., Milford, J.B., 2002. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmospheric Environment 36, 3629-3641.
Morikawa, T., Wakamatsu, S., Tanaka, M., Uno, I., Kamiura, T., Maeda, T., 1998. C2-C5 hydrocarbon concentrations in central Osaka. Atmospheric Environment 32, 2007-2016.
Muezzinoglu, A., Odabasi, M., Onat, L., 2001. Volatile organic compounds in the air of Izmir, Turkey. Atmospheric Environment 35, 753-760.
Mukund, R., Kelly, T.J., Spicer, C.W., 1996. Source attribution of ambient air toxic and other VOCs in Columbus, Ohio. Atmospheric Environment 30, 3457-3470.
Na, K., Kim, Y.P., 2001. Seasonal characteristics of ambient volatile organic compounds in Seoul, Korea. Atmospheric Environment 35, 2603-2614.
Nelson, P.F., Quigley, S.M., 1982. Non-methane hydrocarbons in the atmosphere of Sydney, Australia. Environmental Science and Technology 16, 650-655.
Nelson, P.F., Quigley, S.M., 1984. The hydrocarbons composition of exhaust emitted from gasoline fueled vehicles. Atmospheric Environment 18, 2769-2772.
Penuelas, J., Llusia, J., Gimeno, B.S., 1999. Effect of ozone concentration on biogenic volatile organic compounds emission in the Mediterranean region. Environmental Pollution 105, 17-23.
Pierson, W.R., Gertler, A.W., Robinson, N. F., Sagebiel, J.C., Zielinska, B., Bishop, G.A., Stedman, D.H., Zweidinger, R.B., Ray, W.D., 1996. Real-world automotive emissions – summary of studies in the Fort McHenry and Tuscarora Mountain Tunnels. Atmospheric Environment 30, 2233-2256.
Poulopoulos, S., Philippopoulos, C., 2000. Influence of MTBE addition into gasoline on automotive exhaust emission. Atmospheric Environment 34, 4781-4786.
Revitt, D.M., Muncaster, G.M., Hamilton, R.S., 1999. Trends in hydrocarbon fleet emission at four UK highway sites. The Science of Total Environment 235, 91-99.
Roumegoux, J.P., 1995. Calcul des emission unitaires de polluants des vehicules utilitaires. The Science of Total Environment 169, 205-211.
Saito, S., Nagao, I., Tanaka, H., 2002. Relationship of NOx and NMHC to photochemical O3 production in a coastal and metropolitan areas of Japan. Atmospheric Environment 36, 1277-1286.
Scheff, P.A., Wadden, R.A., 1993. Receptor modeling of volatile organic compounds. 1. Emission inventory and validation. Environmental Science and Technology 27, 617-625.
Schneeweiss, H. and Mathes, H. 1995. Factor analysis and principal compounds. J. Multivariate Analysis 55, 105-124.
Seinfeld, J.H., Pandis, S.N., 1997. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New York, NY.
Sharma, U.K., Kajii, K., Atimoto, H., 2000. Characterization of NMHCs in downtown urban center Kathmandu and rural site Nagarkot in Nepal. Atmospheric Environment 34, 3297-3307.
Sillman, S., Logan, J. A., Wofsy, S.C., 1990. The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. Journal of Geophys. Res.95, 1837-1851.
Singh, H.B., Salas, L., Viezee, W., Sitton, B., Ferek, R., 1992. Measurement of volatile organic chemicals at selected sites in California. Atmospheric Environment 26A, 2929-2946.
SPECIATE 3.1. U.S. Environmental Protection Agency, released in October 1999 (http://www.epa.gov/un/chief/software/speciate/index.html).
Suschka, J., Mrowiec, B., Kuszmider, G., 1996. Volatile organic compounds (VOC) at some sewage treatment plants in Poland. Water Science and Technology 33, 273- 276.
Sexton, K., Westberg, H.H., 1983. Photochemical ozone formation from petroleum refinery emission. Atmospheric Environment 17, 467-475.
TEDS5.1,2003,Taiwan Emission Data System (TEDS)5.1,中鼎工程公司
Thijsse, T.R., van Oss, R.F., Lenschow, P., 1999a. Determination of source contributions to ambient volatile organic compound concentrations in Berlin. Journal of Air and Waste Management Association 49, 1394-1404.
Thijsse, T.R., Roemer, M.G..M., van Oss, R.F., 1999b. Trends in large-scale voc concentrations in the southern Netherlands between 1991 and 1997. Atmospheric Environment 33, 3803-3812.
Tsai, J.H.; Liang, C.P.; Lee, D.Z.; Sheu, Y.C.; Lin, S.J., 1997. Characteristics of Airborne Volatile Organic Aromatics in Tainan, Taiwan; Journal of Environmental Engineering, 406-409.
Toll, I., Baldasano, J.M., 2000. Modelling of photochemical air pollution in the Barcelona area with highly disaggregated anthropogenic and biogenic emission. Atmospheric Environment 34, 3069-3084.
Vega, E., Mugica, V., Carmona, R., Valencia, E., 2000. Hydrocarbon source apportionment in Maxico city using the chemical mass balance receptor model. Atmospheric Environment 34, 4121-4129.
Viney, P.A., Arya, S.P., Li, Y., Murray, G.C., Manuszak, T.L., 2000. Climatology of diurnal trends and vertical distribution of ozone in the atmosphere boundary layer in urban North Carolina. Journal of Air and Waste Management Association 50, 54-64.
Wadden, R.A.,Uno, I., Wakamatsu, S., 1986. Source discrimination of short-term hydrocarbon samples measured aloft. Environmental Science and Technology 20, 473-483.
Wang, J.L., Ding, W.H., Chen, T.Y., 2000. Source determination of light non-methane hydrocarbons by simultaneous multi-site sampling in a metropolitan Area. Chemosphere-Global Change Science 2, 11-22.
Wark, K., Warner, C.F., Davis, W.T., 1998. Air pollution its origin and control. Addison Wesley Longman, Inc.
Watson, J.G., Robinson, N.F., Lewis, C., Coulter, T., 1997. Chemical Mass Balance Receptor Model-Version 8 (CMB8) User’s Manual; Document No. 1808. 1D1; Desert Research Institute: Reno, NV.
Watson, J.G., Chow, J.C., Fujita, E.M., 2001. Review of volatile organic compound source apportionment by chemical mass balance. Atmospheric Environment 35, 1567-1584.
Wang, L.C., 2003. Characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans from emission source and in the atmosphere. Ph. D. Dissertation, Department of Environment Engineering, National Chen Kung University, Tainan, Taiwan.
Wiedinmyer, C., Strange, I.W., Estes, M., Yarwood, G., Allen, D.T., 2000. Biogenic hydrocarbon emission estimates for North Central Texas. Atmospheric Environment 34, 3419-3435.
中興工程顧問股份有限公司,2001,「90年度高雄市空氣品質管理計畫第一次期中報告」,高雄市政府環境保護局。
江右君,1993,「台北地區空氣中揮發性有機物特性與污染源分析」,碩士論文,國立台灣大學環境工程研究所。
吳明泰,1999,「南高屏地區空氣品質監測站揮發性有機物與排放源區之關連性研究」,碩士論文,國立成功大學環境工程研究所。
吳立言,2002,「高雄地區固定源揮發性有機物指紋及光化反應潛勢之探討」,碩士論文,國立中山大學環境工程研究所。
周明顯、樓基中、袁中新、賴嘉祥、何宜達、蔡詠安、吳立言,2001,「高雄市臭氧生成前驅物控制及減量策略研擬」,高雄市政府環境保護局。
林志仁、吳明泰、蔡俊鴻、張能復,1998,「高屏地區大氣揮發性有機物成分特徵與臭氧生成潛勢關連性研究」,第15屆空氣污染控制技術研討會,國立中央大學環境工程系。
林啟燦,2003a,「高雄市大氣中揮發性有機物成分及來源調查研究」,高雄市環境保護局。
林銳敏,2003b,「有害空氣污染調查研究計畫」,高雄縣政府環境保護局。
張能復、余泰毅、梁佳修,1998,「以主成分分析法分類南高屏地區臭氧污染事件日」,第15屆空氣污染控制技術研討會,國立中央大學環境工程系。
慧群環境科技公司,2001,「九十年度石化業揮發性有機物稽查管制計畫」,高雄市政府環境保護局。
陳順宇,2000,「多變量分析」二版,華泰書局。
陳康興、何宜達、賴嘉祥、蔡詠安,2001,「光化學臭氧模式(CAMx)之發展與應用」,2001年空氣品質模式技術研討會論文集,高雄市。
陳康興、周明顯、何宜達、賴嘉祥、蔡詠安,2001,「高雄地區臭氧事件日之模式模擬及分析」, 第十八屆空氣污染防制技術研討會論文集,國立高雄第一科技大學。
陳康興、何宜達、蔡詠安、賴嘉祥,2002,「氣象條件與臭氧事件日相關性之探討」,第十九屆空氣污染防制技術研討會論文集,國立台灣大學。
陳康興、周明顯、賴嘉祥、何宜達、吳立言,2002,「污水處理廠揮發性有機物逸散指紋資料及臭氧生成潛勢分析」,第八屆海峽兩岸環境保護研討會論文集,新竹市交通大學。
陳瑞仁、陳康興、袁中新、林傑、賴嘉祥、何宜達、彭彥彬,2002,「屏東地區空氣品質劣化原因探究及改善策略研擬」,屏東縣環境保護局。
陳康興、謝連德、賴嘉祥、何宜達、彭彥彬,2003,「屏東地區揮發性有機物空氣污染調查檢測計畫」,屏東縣環境保護局。
陳康興、周明顯,2004,「九十三年度空氣品質監測站污染源來源分析計畫」研究計畫書,國立中山大學環境工程研究所。
謝祝欽、王麗婷、洪世皇、黃仍鈺,1998,「南台灣地區國有林地異戊二烯與單帖類排放量推估「與最大臭氧生成潛勢之研究」,第15屆空氣污染控制技術研討會,國立中央大學環境工程系。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.180.32
論文開放下載的時間是 校外不公開

Your IP address is 3.137.180.32
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code